Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

Overview

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras

Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021) [Paper] [Video].

In this repository, we provide instructions for downloading N-ImageNet along with the implementation of the baseline models presented in the paper. If you have any questions regarding the dataset or the baseline implementations, please leave an issue or contact [email protected].

Downloading N-ImageNet

To download N-ImageNet, please fill out the following questionaire, and we will send guidelines for downloading the data via email: [Link].

Training / Evaluating Baseline Models

Installation

The codebase is tested on a Ubuntu 18.04 machine with CUDA 10.1. However, it may work with other configurations as well. First, create and activate a conda environment with the following command.

conda env create -f environment.yml
conda activate e2t

In addition, you must install pytorch_scatter. Follow the instructions provided in the pytorch_scatter github repo. You need to install the version for torch 1.7.1 and CUDA 10.1.

Dataset Setup

Before you move on to the next step, please download N-ImageNet. Once you download N-ImageNet, you will spot a structure as follows.

N_Imagenet
├── train_list.txt
├── val_list.txt
├── extracted_train (train split)
│   ├── nXXXXXXXX (label)
│   │   ├── XXXXX.npz (event data)
│   │   │
│   │   ⋮
│   │   │
│   │   └── YYYYY.npz (event data)
└── extracted_val (val split)
    └── nXXXXXXXX (label)
        ├── XXXXX.npz (event data)
        │
        ⋮
        │
        └── YYYYY.npz (event data)

The N-ImageNet variants file (which would be saved as N_Imagenet_cam once downloaded) will have a similar file structure, except that it only contains validation files. The following instruction is based on N-ImageNet, but one can follow a similar step to test with N-ImageNet variants.

First, modify train_list.txt and val_list.txt such that it matches the directory structure of the downloaded data. To illustrate, if you open train_list.txt you will see the following

/home/jhkim/Datasets/N_Imagenet/extracted_train/n01440764/n01440764_10026.npz
⋮
/home/jhkim/Datasets/N_Imagenet/extracted_train/n15075141/n15075141_999.npz

Modify each path within the .txt file so that it accords with the directory in which N-ImageNet is downloaded. For example, if N-ImageNet is located in /home/karina/assets/Datasets/, modify train.txt as follows.

/home/karina/assets/Datasets/N_Imagenet/extracted_train/n01440764/n01440764_10026.npz
⋮
/home/karina/assets/Datasets/N_Imagenet/extracted_train/n15075141/n15075141_999.npz

Once this is done, create a Datasets/ directory within real_cnn_model, and create a symbolic link within Datasets. To illustrate, using the directory structure of the previous example, first use the following command.

cd PATH_TO_REPOSITORY/real_cnn_model
mkdir Datasets; cd Datasets
ln -sf /home/karina/assets/Datasets/N_Imagenet/ ./
ln -sf /home/karina/assets/Datasets/N_Imagenet_cam/ ./  (If you have also downloaded the variants)

Congratulations! Now you can start training/testing models on N-ImageNet.

Training a Model

You can train a model based on the binary event image representation with the following command.

export PYTHONPATH=PATH_TO_REPOSITORY:$PYTHONPATH
cd PATH_TO_REPOSITORY/real_cnn_model
python main.py --config configs/imagenet/cnn_adam_acc_two_channel_big_kernel_random_idx.ini

For the examples below, we assume the PYTHONPATH environment variable is set as above. Also, you can change minor details within the config before training by using the --override flag. For example, if you want to change the batch size use the following command.

python main.py --config configs/imagenet/cnn_adam_acc_two_channel_big_kernel_random_idx.ini --override 'batch_size=8'

Evaluating a Model

Suppose you have a pretrained model saved in PATH_TO_REPOSITORY/real_cnn_model/experiments/best.tar. You evaluate the performance of this model on the N-ImageNet validation split by using the following command.

python main.py --config configs/imagenet/cnn_adam_acc_two_channel_big_kernel_random_idx.ini --override 'load_model=PATH_TO_REPOSITORY/real_cnn_model/experiments/best.tar'

Downloading Pretrained Models

Coming soon!

Owner
Noob grad student
Demo notebooks for Qiskit application modules demo sessions (Oct 8 & 15):

qiskit-application-modules-demo-sessions This repo hosts demo notebooks for the Qiskit application modules demo sessions hosted on Qiskit YouTube. Par

Qiskit Community 46 Nov 24, 2022
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
Deep metric learning methods implemented in Chainer

Deep Metric Learning Implementation of several methods for deep metric learning in Chainer v4.2.0. Proxy-NCA: No Fuss Distance Metric Learning using P

ronekko 156 Nov 28, 2022
EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation.

This repository contains data and code for our EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation. Please contact me at

9 Oct 28, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Project 1: Standardized Test Analysis by Adam Klesc Overview This project covers: Basic statistics and probability Many Python programming concepts Pr

Adam Muhammad Klesc 1 Jan 03, 2022
Deep Ensemble Learning with Jet-Like architecture

Ransomware analysis using DEL with jet-like architecture comprising two CNN wings, a sparse AE tail, a non-linear PCA to produce a diverse feature space, and an MLP nose

Ahsen Nazir 2 Feb 06, 2022
👨‍💻 run nanosaur in simulation with Gazebo/Ingnition

🦕 👨‍💻 nanosaur_gazebo nanosaur The smallest NVIDIA Jetson dinosaur robot, open-source, fully 3D printable, based on ROS2 & Isaac ROS. Designed & ma

nanosaur 9 Jul 19, 2022
Streamlit App For Product Analysis - Streamlit App For Product Analysis

Streamlit_App_For_Product_Analysis Здравствуйте! Перед вами дашборд, позволяющий

Grigory Sirotkin 1 Jan 10, 2022
Explaining Hyperparameter Optimization via PDPs

Explaining Hyperparameter Optimization via PDPs This repository gives access to an implementation of the methods presented in the paper submission “Ex

2 Nov 16, 2022
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
A curated list of awesome projects and resources related fastai

A curated list of awesome projects and resources related fastai

Tanishq Abraham 138 Dec 22, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

MonoRUn MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 96 Dec 10, 2022
Official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation

SegPC-2021 This is the official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation by

Datascience IIT-ISM 13 Dec 14, 2022
Implementation of ConvMixer-Patches Are All You Need? in TensorFlow and Keras

Patches Are All You Need? - ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in t

Sayan Nath 8 Oct 03, 2022
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022