codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Overview

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference)

Contents

Overview

We propose to conduct scheduled sampling based on decoding steps instead of the original training steps. We observe that our proposal can more realistically simulate the distribution of real translation errors, thus better bridging the gap between training and inference. The paper has been accepted to the main conference of EMNLP-2021.

Background

fastText

We conduct scheduled sampling for the Transformer with a two-pass decoder. An example of pseudo-code is as follows:

# first-pass: the same as the standard Transformer decoder
first_decoder_outputs = decoder(first_decoder_inputs)

# sampling tokens between model predicitions and ground-truth tokens
second_decoder_inputs = sampling_function(first_decoder_outputs, first_decoder_inputs)

# second-pass: computing the decoder again with the above sampled tokens
second_decoder_outputs = decoder(second_decoder_inputs)

Quick to Use

Our approaches are suitable for most autoregressive-based tasks. Please try the following pseudo-codes when conducting scheduled sampling:

import torch

def sampling_function(first_decoder_outputs, first_decoder_inputs, max_seq_len, tgt_lengths)
    '''
    conduct scheduled sampling based on the index of decoded tokens 
    param first_decoder_outputs: [batch_size, seq_len, hidden_size], model prediections 
    param first_decoder_inputs: [batch_size, seq_len, hidden_size], ground-truth target tokens
    param max_seq_len: scalar, the max lengh of target sequence
    param tgt_lengths: [batch_size], the lenghs of target sequences in a mini-batch
    '''

    # indexs of decoding steps
    t = torch.range(0, max_seq_len-1)

    # differenct sampling strategy based on decoding steps
    if sampling_strategy == "exponential":
        threshold_table = exp_radix ** t  
    elif sampling_strategy == "sigmoid":
        threshold_table = sigmoid_k / (sigmoid_k + torch.exp(t / sigmoid_k ))
    elif sampling_strategy == "linear":        
        threshold_table = torch.max(epsilon, 1 - t / max_seq_len)
    else:
        ValuraiseeError("Unknown sampling_strategy %s" % sampling_strategy)

    # convert threshold_table to [batch_size, seq_len]
    threshold_table = threshold_table.unsqueeze_(0).repeat(max_seq_len, 1).tril()
    thresholds = threshold_table[tgt_lengths].view(-1, max_seq_len)
    thresholds = current_thresholds[:, :seq_len]

    # conduct sampling based on the above thresholds
    random_select_seed = torch.rand([batch_size, seq_len]) 
    second_decoder_inputs = torch.where(random_select_seed < thresholds, first_decoder_inputs, first_decoder_outputs)

    return second_decoder_inputs
    

Further Usage

Error accumulation is a common phenomenon in NLP tasks. Whenever you want to simulate the accumulation of errors, our method may come in handy. For examples:

# sampling tokens between noisy target tokens and ground-truth tokens
decoder_inputs = sampling_function(noisy_decoder_inputs, golden_decoder_inputs, max_seq_len, tgt_lengths)

# computing the decoder with the above sampled tokens
decoder_outputs = decoder(decoder_inputs)
# sampling utterences from model predictions and ground-truth utterences
contexts = sampling_function(predicted_utterences, golden_utterences, max_turns, current_turns)

model_predictions = dialogue_model(contexts, target_inputs)

Experiments

We provide scripts to reproduce the results in this paper(NMT and text summarization)

Citation

Please cite this paper if you find this repo useful.

@inproceedings{liu_ss_decoding_2021,
    title = "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation",
    author = "Liu, Yijin  and
      Meng, Fandong  and
      Chen, Yufeng  and
      Xu, Jinan  and
      Zhou, Jie",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
    year = "2021",
    address = "Online"
}

Contact

Please feel free to contact us ([email protected]) for any further questions.

Owner
Adaxry
Fast learner, eagle for new knowledge and deeper understanding
Adaxry
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

87 Oct 19, 2022
This is the official implementation of TrivialAugment and a mini-library for the application of multiple image augmentation strategies including RandAugment and TrivialAugment.

Trivial Augment This is the official implementation of TrivialAugment (https://arxiv.org/abs/2103.10158), as was used for the paper. TrivialAugment is

AutoML-Freiburg-Hannover 94 Dec 30, 2022
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
2 Jul 19, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
A python package for generating, analyzing and visualizing building shadows

pybdshadow Introduction pybdshadow is a python package for generating, analyzing and visualizing building shadows from large scale building geographic

Qing Yu 13 Nov 30, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
The official homepage of the COCO-Stuff dataset.

The COCO-Stuff dataset Holger Caesar, Jasper Uijlings, Vittorio Ferrari Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augment

Holger Caesar 715 Dec 31, 2022
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
Square Root Bundle Adjustment for Large-Scale Reconstruction

RootBA: Square Root Bundle Adjustment Project Page | Paper | Poster | Video | Code Table of Contents Citation Dependencies Installing dependencies on

Nikolaus Demmel 205 Dec 20, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/

Plan de Tecnologías del Lenguaje - Gobierno de España 12 Nov 14, 2022
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania

680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths

Haoran Tang 0 Apr 22, 2022
InterfaceGAN++: Exploring the limits of InterfaceGAN

InterfaceGAN++: Exploring the limits of InterfaceGAN Authors: Apavou Clément & Belkada Younes From left to right - Images generated using styleGAN and

Younes Belkada 42 Dec 23, 2022