Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Overview

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

This repository is the official implementation of [Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification] (to appear in the proceedings of NIPS'21).

Requirements

To install requirements (Python 3.6.9):

python3 -m pip install -r requirements.txt

Getting started

Reproduce results from the paper

In order to run ExperimentXXX in the paper, do as follows

  • Run command
cd experiments_scripts/
./ExperimentXXX.sh
  • That starts the computation, when it is done, the following files are present in the results/ folder

    • ExperimentXXX/method=[algorithm]_[list of options = values].csv

      Contains a matrix of 3 columns ("complexity": number of sampled arms, "regret": error in identification, "linearity": 1 if the algorithm considers data as linear, 0 otherwise, "running time": time in seconds for running the iteration) and XXX rows (controlled by parameter n_simu in the command) corresponding to each iteration of the algorithm.

    • ExperimentXXX/method=[algorithm]_[list of options = values]-emp_rec.csv

      Contains a matrix of XXX columns (number of arms in the experiment, controlled by parameter K in the command), and two rows, first row being the names of the arms, and the second one being the percentage of the time a given arm was returned in the set of good arms across iterations.

    • ExperimentXXX/params.json

      Saves in a JSON file the parameters set in the call to the code.

  • PNG file ExperimentXXX/boxplot.png is created in folder boxplots/

You can only run the code to plot the boxplot from a previously run ExperimentXXX

  • Run command
cd experiments_scripts
./ExperimentXXX.sh boxplot

ExperimentXXX won't be run, but if the corresponding results folder is present, then it creates the boxplot in folder boxplots/ExperimentXXX

Run

Have a look at file code/main.py to see the arguments needed.

Add new elements of code

  • Add a new bandit by creating a new instance of class Misspecified in file code/misspecified.py
  • Add a new dataset by adding a few lines of code to file code/data.py
  • Add new types of rewards by creating a new instance of class problem in file code/problems.py
  • Add new types of online learners by creating a new instance of class Learner in file code/learners.py

Results

Please refer to the paper.

Contributing

All of the code is under MIT license. Everyone is most welcome to submit pull requests.

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
A pytorch-based real-time segmentation model for autonomous driving

CFPNet: Channel-Wise Feature Pyramid for Real-Time Semantic Segmentation This project contains the Pytorch implementation for the proposed CFPNet: pap

342 Dec 22, 2022
Imagededup - 😎 Finding duplicate images made easy

imagededup is a python package that simplifies the task of finding exact and near duplicates in an image collection.

idealo 4.3k Jan 07, 2023
Edge Restoration Quality Assessment

ERQA - Edge Restoration Quality Assessment ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR

MSU Video Group 27 Dec 17, 2022
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

SymmetryNet SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images ACM Transactions on Gra

26 Dec 05, 2022
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
This dlib-based facial login system

Facial-Login-System This dlib-based facial login system is a technology capable of matching a human face from a digital webcam frame capture against a

Mushahid Ali 3 Apr 23, 2022
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023
LyaNet: A Lyapunov Framework for Training Neural ODEs

LyaNet: A Lyapunov Framework for Training Neural ODEs Provide the model type--config-name to train and test models configured as those shown in the pa

Ivan Dario Jimenez Rodriguez 21 Nov 21, 2022
Programming with Neural Surrogates of Programs

Programming with Neural Surrogates of Programs

0 Dec 12, 2021
[CVPR 2022 Oral] Versatile Multi-Modal Pre-Training for Human-Centric Perception

Versatile Multi-Modal Pre-Training for Human-Centric Perception Fangzhou Hong1  Liang Pan1  Zhongang Cai1,2,3  Ziwei Liu1* 1S-Lab, Nanyang Technologic

Fangzhou Hong 96 Jan 03, 2023
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

πŸ”₯Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
HEAM: High-Efficiency Approximate Multiplier Optimization for Deep Neural Networks

Approximate Multiplier by HEAM What's HEAM? HEAM is a general optimization method to generate high-efficiency approximate multipliers for specific app

4 Sep 11, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023