An Implementation of SiameseRPN with Feature Pyramid Networks

Overview

SiameseRPN with FPN

This project is mainly based on HelloRicky123/Siamese-RPN. What I've done is just add a Feature Pyramid Network method to the original AlexNet structures.

For more details about siameseRPN please refer to the paper : High Performance Visual Tracking with Siamese Region Proposal Network by Bo Li, Junjie Yan,Wei Wu, Zheng Zhu, Xiaolin Hu.

For more details about Feature Pyramid Network please refer to the paper: Feature Pyramid Network for Object Detection by Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.

Networks

  • Siamese Region Proposal Networks

    image-20210909160951628

  • Feature Pyramid Networks

    image-20210909161336484

  • SimaeseRPN+FPN

    • Template Branch

      0001

    • Detection Branch

      0001

Results

This project can get 0.618 AUC on OTB100, which also achieves overall 1.3% progress than the performance of baseline Siamese-RPN. Additionally, based on the ablation study results, it also shows that it can achieve robust performance different operating systems and GPUs.

Data preparation

I only use pre-trained models to finish my experiments,so here I would post the testing dataset OTB100 I get from http://cvlab.hanyang.ac.kr/tracker_benchmark/

If you don't want to download through the website above, you can just download: https://pan.baidu.com/s/1vWIn8ovCGKmlgIdHdt_MkA key: p8u4

For more details about OTB100 please refer to the paper: Object Tracking Benchmark by Yi Wu, Jongwoo Lim, Ming-Hsuan Yang.

Train phase

I didn't do any training but I still keep the baseline training method in my project. So if you have VID dataset or youtube-bb dataset, I would just post the steps of training here

Create dataset:

python bin/create_dataset_ytbid.py --vid-dir /PATH/TO/ILSVRC2015 --ytb-dir /PATH/TO/YT-BB --output-dir /PATH/TO/SAVE_DATA --num_threads 6

Create lmdb:

python bin/create_lmdb.py --data-dir /PATH/TO/SAVE_DATA --output-dir /PATH/TO/RESULT.lmdb --num_threads 12

Train:

python bin/train_siamrpn.py --data_dir /PATH/TO/SAVE_DATA

Test phase

If want to test the tracker, please first change the project path:

sys.path.append('[your_project_path]')

And then choose the combinations of different layers I putted in the net/network.py

then input your model path and dataset path to run:

python bin/test_OTB.py -ms [your_model_path] -v tb100 -d [your_dataset_path]

Environment

I've exported my anaconda and pip environment into /env/conda_env.yaml and /env/pip_requirements.txt

if you want to use it, just run the command below accordingly

for anaconda:

conda create -n [your_env_name] -f conda_env.yaml

for pip:

pip install -r requirements.txt

Model Download

Model which the baseline uses: https://pan.baidu.com/s/1vSvTqxaFwgmZdS00U3YIzQ keyword: v91k

Model after training 50 epoch: https://pan.baidu.com/s/1m9ISra0B04jcmjW1n73fxg keyword: 0s03

Experimental Environment

(1)

DELL-Precision-7530

OS: Ubuntu 18.04 LTS CPU: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz

Memory: 2*8G DDR4 2666MHZ

GPU: Nvidia Quadro P1000

(2)

HP OMEN

OS: Windows 10 Home Edition

CPU: Intel(R) Core(TM) i7-9750H CPU @ 2.6GHz

Memory: 2*8G DDR4 2666MHZ

GPU: Nvidia Geforce RTX2060

Optimization

On Ubuntu and Quadro P1000

  • AUCs with model siamrpn_38.pth
Layers Results(AUC)
baseline 0.610
2+5 0.618
2+3+5 0.607
2+3+4+5 0.611
  • AUCs with model siamrpn_50.pth
Layers Results(AUC)
baseline 0.600
2+5 0.605
2+3+5 0.594
2+3+4+5 0.605

On Windows 10 and Nvidia Geforce RTX2060

  • AUCs with model siamrpn_38.pth
layers Results(AUC)
baseline 0.610
2+5 0.617
2+3+5 0.607
2+3+4+5 0.612
  • AUCs with model siamrpn_50.pth
Layers Results(AUC)
baseline 0.597
2+5 0.606
2+3+5 0.597
2+3+4+5 0.605

Reference

[1] B. Li, J. Yan, W. Wu, Z. Zhu, X. Hu, High Performance Visual Tracking with Siamese Region Proposal Network, inProceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pages 8971-8980.

[2] T. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, S. Belongie, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pages 2117-2125.

[3] Y. Wu, J. Lim, M. Yang, "Object Tracking Benchmark", in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, pages 1834-1848.

A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
Sentiment analysis translations of the Bhagavad Gita

Sentiment and Semantic Analysis of Bhagavad Gita Translations It is well known that translations of songs and poems not only breaks rhythm and rhyming

Machine learning and Bayesian inference @ UNSW Sydney 3 Aug 01, 2022
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

Alex Damian 7k Dec 30, 2022
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

Andy Brock 478 Aug 04, 2022
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)

PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive

Jingwei Huang 47 Dec 06, 2022
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
A robust pointcloud registration pipeline based on correlation.

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration Ubuntu 18.04+ROS Melodic: Overview Pointcloud registration using correspondenc

ETHZ ASL 101 Dec 01, 2022
Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis"

Beyond the Spectrum Implementation for the IJCAI2021 work "Beyond the Spectrum: Detecting Deepfakes via Re-synthesis" by Yang He, Ning Yu, Margret Keu

Yang He 27 Jan 07, 2023
Pytorch Implementation of Residual Vision Transformers(ResViT)

ResViT Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper: Onat Dalmaz and Mahmut Yurt

ICON Lab 41 Dec 08, 2022
DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
Dynamic Head: Unifying Object Detection Heads with Attentions

Dynamic Head: Unifying Object Detection Heads with Attentions dyhead_video.mp4 This is the official implementation of CVPR 2021 paper "Dynamic Head: U

Microsoft 550 Dec 21, 2022
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022
Pytorch implementation of our paper accepted by NeurIPS 2021 -- Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) (Link) Overview Prerequisites Linu

Shaojie Li 34 Mar 31, 2022
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Jan 01, 2023