PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

Overview

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

This repository contains the implementation of MSBG hearing loss model and MBSTOI intellibility metric in PyTorch. The models are differentiable and can be used as a loss function to train a neural network. Both models follow Python implementation of MSBG and MBSTOI provided by organizers of Clarity Enhancement challenge. Please check the implementation at Clarity challenge repository for more information about the models.

Please note that the differentiable models are approximations of the original models and are intended to be used to train neural networks, not to give exactly the same outputs as the original models.

Requirements and installation

The model uses parts of the functionality of the original MSBG and MBSTOI models. First, download the Clarity challenge repository and set its location as CLARITY_ROOT. To install the necessary requirements:

pip install -r requirements.txt
pushd .
cd $CLARITY_ROOT/projects/MSBG/packages/matlab_mldivide
python setup.py install
popd

Additionally, set paths to the Clarity repository and this repository in path.sh and run the path.sh script before using the provided modules.

. path.sh

Tests and example script

Directory tests contains scipts to test the correspondance of the differentiable modules compared to their original implementation. To run the tests, you need the Clarity data, which can be obtained from the Clarity challenge repository. Please set the paths to the data in the scripts.

MSBG test

The tests of the hearing loss compare the outputs of functions provided by the original implementation and the differentiable version. The output shows the mean differences of the output signals

Test measure_rms, mean difference 9.629646580133766e-09
Test src_to_cochlea_filt forward, mean difference 9.830486283616455e-16
Test src_to_cochlea_filt backward, mean difference 6.900756131702976e-15
Test smear, mean difference 0.00019685214410863303
Test gammatone_filterbank, mean difference 5.49958965492409e-07
Test compute_envelope, mean difference 4.379759604381869e-06
Test recruitment, mean difference 3.1055169855373764e-12
Test cochlea, mean difference 2.5698933453410134e-06
Test hearing_loss, mean difference 2.2326804706160673e-06

MBSTOI test

The test of the intelligbility metric compares the MBSTOI values obtained by the original and differentiable model over the development set of Clarity challenge. The following graph shows the comparison. Correspondance of MBSTOI metrics.

Example script

The script example.py shows how to use the provided module as a loss function for training the neural network. In the script, we use a simple small model and overfit on one example. The descreasing loss function confirms that the provided modules are differentiable.

Loss function with MSBG and MBSTOI loss

Citation

If you use this work, please cite:

@inproceedings{Zmolikova2021BUT,
  author    = {Zmolikova, Katerina and \v{C}ernock\'{y}, Jan "Honza"},
  title     = {{BUT system for the first Clarity enhancement challenge}},
  year      = {2021},
  booktitle = {The Clarity Workshop on Machine Learning Challenges for Hearing Aids (Clarity-2021)},
}
Owner
BUT <a href=[email protected]">
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
The official code for paper "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling".

R2D2 This is the official code for paper titled "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Mode

Alipay 49 Dec 17, 2022
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation

Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation (CVPR2019) This is a pytorch implementatio

Yawei Luo 280 Jan 01, 2023
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.

Rockpool Rockpool is a Python package for developing signal processing applications with spiking neural networks. Rockpool allows you to build network

SynSense 21 Dec 14, 2022
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Official Paddle Implementation] [Huggingface Gradio Demo] [Unofficial

442 Dec 16, 2022
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
Multi-Horizon-Forecasting-for-Limit-Order-Books

Multi-Horizon-Forecasting-for-Limit-Order-Books This jupyter notebook is used to demonstrate our work, Multi-Horizon Forecasting for Limit Order Books

Zihao Zhang 116 Dec 23, 2022
GULAG: GUessing LAnGuages with neural networks

GULAG: GUessing LAnGuages with neural networks Classify languages in text via neural networks. Привет! My name is Egor. Was für ein herrliches Frühl

Egor Spirin 12 Sep 02, 2022
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
Details about the wide minima density hypothesis and metrics to compute width of a minima

wide-minima-density-hypothesis Details about the wide minima density hypothesis and metrics to compute width of a minima This repo presents the wide m

Nikhil Iyer 9 Dec 27, 2022
Reproduced Code for Image Forgery Detection papers.

Image Forgery Detection With over 4.5 billion active internet users, the amount of multimedia content being shared every day has surpassed everyone’s

Umar Masud 15 Dec 06, 2022
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
An alarm clock coded in Python 3 with Tkinter

Tkinter-Alarm-Clock An alarm clock coded in Python 3 with Tkinter. Run python3 Tkinter Alarm Clock.py in a terminal if you have Python 3. NOTE: This p

CodeMaster7000 1 Dec 25, 2021
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023