Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

Overview

TOQ-Nets-PyTorch-Release

Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets

Temporal and Object Quantification Networks
Jiayuan Mao, Zhezheng Luo, Chuang Gan, Joshua B. Tenenbaum, Jiajun Wu, Leslie Pack Kaelbling, and Tomer D. Ullman
In International Joint Conference on Artificial Intelligence (IJCAI) 2021 (Poster)
[Paper] [Project Page] [BibTex]

@inproceedings{Mao2021Temporal,
    title={{Temporal and Object Quantification Networks}},
    author={Mao, Jiayuan and Luo, Zhezheng and Gan, Chuang and Tenenbaum, Joshua B. and Wu, Jiajun and Kaelbling, Leslie Pack and Ullman, Tomer D.},
    booktitle={International Joint Conferences on Artificial Intelligence},
    year={2021}
}

Prerequisites

  • Python 3
  • PyTorch 1.0 or higher, with NVIDIA CUDA Support
  • Other required python packages specified by requirements.txt. See the Installation.

Installation

Install Jacinle: Clone the package, and add the bin path to your global PATH environment variable:

git clone https://github.com/vacancy/Jacinle --recursive
export PATH=<path_to_jacinle>/bin:$PATH

Clone this repository:

git clone https://github.com/vacancy/TOQ-Nets-PyTorch --recursive

Create a conda environment for TOQ-Nets, and install the requirements. This includes the required python packages from both Jacinle TOQ-Nets. Most of the required packages have been included in the built-in anaconda package:

conda create -n nscl anaconda
conda install pytorch torchvision -c pytorch

Dataset preparation

We evaluate our model on four datasets: Soccer Event, RLBench, Toyota Smarthome and Volleyball. To run the experiments, you need to prepare them under NSPCL-Pytorch/data.

Soccer Event

Download link

RLBenck

Download link

Toyota Smarthome

Dataset can be obtained from the website: Toyota Smarthome: Real-World Activities of Daily Living

@InProceedings{Das_2019_ICCV,
    author = {Das, Srijan and Dai, Rui and Koperski, Michal and Minciullo, Luca and Garattoni, Lorenzo and Bremond, Francois and Francesca, Gianpiero},
    title = {Toyota Smarthome: Real-World Activities of Daily Living},
    booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
    month = {October},
    year = {2019}
}

Volleyball

Dataset can be downloaded from this github repo.

@inproceedings{msibrahiCVPR16deepactivity,
  author    = {Mostafa S. Ibrahim and Srikanth Muralidharan and Zhiwei Deng and Arash Vahdat and Greg Mori},
  title     = {A Hierarchical Deep Temporal Model for Group Activity Recognition.},
  booktitle = {2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year      = {2016}
}

Training and evaluation.

Standard 9-way classification task

To train the model on the standard 9-way classification task on the soccer dataset:

jac-crun <gpu_ids> scripts/action_classification_softmax.py -t 1001 --run_name 9_way_classification -Mmodel-name "'NLTL_SAv3'" -Mdata-name "'LongVideoNvN'" -Mn_epochs 200 -Mbatch_size 128 -Mhp-train-estimate_inequality_parameters "(1,1)" -Mmodel-both_quantify False -Mmodel-depth 0

The hyper parameter estimate_inequality_parameters is to estimate the distribution of input physical features, and is only required when training TOQ-Nets (but not for baselines).

Few-shot actions

To train on regular actions and test on new actions:

jac-crun <gpu_ids> scripts/action_classification_softmax.py  -t 1002 --run_name few_shot -Mdata-name "'TrajectorySingleActionNvN_Wrapper_FewShot_Softmax'" -Mmodel-name "'NLTL_SAv3'" -Mlr 3e-3 -Mn_epochs 200 -Mbatch_size 128 -Mdata-new_actions "[('interfere', (50, 50, 2000)), ('sliding', (50, 50, 2000))]" -Mhp-train-finetune_period "(1,200)" -Mhp-train-estimate_inequality_parameters "(1,1)"

You can set the split of few-shot actions using -Mdata-new_actions, and the tuple (50, 50, 2000) represents the number of samples available in training validation and testing.

Generalization to more of fewer players and temporally warped trajectories.

To test the generalization to more or fewer players, as well as temporal warpped trajectories, first train the model on the standard 6v6 games:

jac-crun <gpu_ids> scripts/action_classification_softmax.py -t 1003 --run_name generalization -Mmodel-name "'NLTL_SAv3'" -Mdata-name "'LongVideoNvN'" -Mdata-n_players 6 -Mn_epochs 200 -Mbatch_size 128 -Mhp-train-estimate_inequality_parameters "(1,1)" -Mlr 3e-3

Then to generalize to games with 11 players:

jac-crun 3 scripts/action_classification_softmax.py -t 1003 --run_name generalization_more_players --eval 200 -Mdata-name "'LongVideoNvN'" -Mdata-n_train 0.1 -Mdata-temporal "'exact'" -Mdata-n_players 11

The number 200 after --eval should be equal to the number of epochs of training. Note that 11 can be replace by any number of players from [3,4,6,8,11].

Similarly, to generalize to temporally warped trajectoryes:

jac-crun 3 scripts/action_classification_softmax.py -t 1003 --run_name generalization_time_warp --eval 200 -Mdata-name "'LongVideoNvN'" -Mdata-n_train 0.1 -Mdata-temporal "'all'" -Mdata-n_players 6

Baselines

We also provide the example commands for training all baselines:

STGCN

jac-crun <gpu_ids> scripts/action_classification_softmax.py -t 1004 --run_name stgcn -Mmodel-name "'STGCN_SA'" -Mdata-name "'LongVideoNvN'" -Mdata-n_players 6 -Mmodel-n_agents 13 -Mn_epochs 200 -Mbatch_size 128

STGCN-LSTM

jac-crun <gpu_ids> scripts/action_classification_softmax.py -t 1005 --run_name stgcn_lstm -Mmodel-name "'STGCN_LSTM_SA'" -Mdata-name "'LongVideoNvN'" -Mdata-n_players 6 -Mmodel-n_agents 13 -Mn_epochs 200 -Mbatch_size 128

Space-Time Region Graph

jac-crun <gpu_ids> scripts/action_classification_softmax.py -t 1006 --run_name strg -Mmodel-name "'STRG_SA'" -Mdata-name "'LongVideoNvN'" -Mn_epochs 200 -Mbatch_size 128

Non-Local

jac-crun <gpu_ids> scripts/action_classification_softmax.py -t 1007 --run_name non_local -Mmodel-name "'NONLOCAL_SA'" -Mdata-name "'LongVideoNvN'" -Mn_epochs 200 -Mbatch_size 128
Owner
Zhezheng Luo
Zhezheng Luo
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Irene Yuan 24 Jun 27, 2022
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022
Unsupervised Discovery of Object Radiance Fields

Unsupervised Discovery of Object Radiance Fields by Hong-Xing Yu, Leonidas J. Guibas and Jiajun Wu from Stanford University. arXiv link: https://arxiv

Hong-Xing Yu 148 Nov 30, 2022
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022
Feature board for ERPNext

ERPNext Feature Board Feature board for ERPNext Development Prerequisites k3d kubectl helm bench Install K3d Cluster # export K3D_FIX_CGROUPV2=1 # use

Revant Nandgaonkar 16 Nov 09, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 3 Apr 18, 2022
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight

SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia

Fudan Zhang Vision Group 272 Dec 25, 2022
This is the implementation of the paper "Self-supervised Outdoor Scene Relighting"

Self-supervised Outdoor Scene Relighting This is the implementation of the paper "Self-supervised Outdoor Scene Relighting". The model is implemented

Ye Yu 24 Dec 17, 2022
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Hamed Bonab 16 Sep 12, 2022
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

4 Jun 20, 2021
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
Yet Another Reinforcement Learning Tutorial

This repo contains self-contained RL implementations

Sungjoon 65 Dec 10, 2022
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte

mandos 43 Dec 07, 2022
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset

8 Oct 21, 2022
Codeflare - Scale complex AI/ML pipelines anywhere

Scale complex AI/ML pipelines anywhere CodeFlare is a framework to simplify the integration, scaling and acceleration of complex multi-step analytics

CodeFlare 169 Nov 29, 2022