This code is an unofficial implementation of HiFiSinger.

Overview

HiFiSinger

This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers:

Chen, J., Tan, X., Luan, J., Qin, T., & Liu, T. Y. (2020). HiFiSinger: Towards High-Fidelity Neural Singing Voice Synthesis. arXiv preprint arXiv:2009.01776.
Ren, Y., Ruan, Y., Tan, X., Qin, T., Zhao, S., Zhao, Z., & Liu, T. Y. (2019). Fastspeech: Fast, robust and controllable text to speech. Advances in Neural Information Processing Systems, 32, 3171-3180.
Yamamoto, R., Song, E., & Kim, J. M. (2020, May). Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 6199-6203). IEEE.

Requirements

Please see the 'requirements.txt'.

Structure

Generator

  • In training, length regulator use target duration.

Discriminator

  • HiFiSinger uses Sub Frequency GAN(SF-GAN).
  • The frequency range of sampling is fixed and length range is randomized.

Used dataset

  • Code verification was conducted through a limited-sized, private Korean dataset.
  • Please report the information about any available open source dataset.
    • The set of midi files with syncronized lyric and high resolution vocal wave files

Hyper parameters

Before proceeding, please set the pattern, inference, and checkpoint paths in 'Hyper_Parameters.yaml' according to your environment.

  • Sound

    • Setting basic sound parameters.
  • Tokens

    • The number of Lyric token.
  • Max_Note

    • The highest note value for embedding.
  • Min/Max duration

    • Mel length which model use.
    • Min duration is used at pattern generating only.
  • Encoder

    • Setting the encoder.
  • Duration_Predictor

    • Setting for duration predictor
  • Decoder

    • Setting for decoder.
  • Discriminator

    • Setting for discriminator
    • In frequency range, frequency is the index of mel dimension.
      • The index must be equal or less than Sould.Mel_Dim.
  • Vocoder_Path

    • Setting the traced vocoder path.
    • To generate this, please check Here
  • Train

    • Setting the parameters of training.
  • Use_Mixed_Precision

  • Inference_Batch_Size

    • Setting the batch size when inference
  • Inference_Path

    • Setting the inference path
  • Checkpoint_Path

    • Setting the checkpoint path
  • Log_Path

    • Setting the tensorboard log path
  • Device

    • Setting which GPU device is used in multi-GPU enviornment.
    • Or, if using only CPU, please set '-1'. (But, I don't recommend while training.)

Generate pattern

  • There is no available open source dataset.

Inference file path while training for verification.

  • Inference_for_Training
    • There are two examples for inference.
    • It is midi file based script.

Run

Command

python Train.py -s 
  • -hp

    • The hyper paramter file path
    • This is required.
  • -s

    • The resume step parameter.
    • Default is 0.
Owner
Heejo You
Main focus: Psycholinguistics / Mechine learning / Deep learning
Heejo You
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
PyTorch source code for Distilling Knowledge by Mimicking Features

LSHFM.detection This is the PyTorch source code for Distilling Knowledge by Mimicking Features. And this project contains code for object detection wi

Guo-Hua Wang 4 Dec 17, 2022
U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

The code for our newly accepted paper in Pattern Recognition 2020: "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection."

Xuebin Qin 6.5k Jan 09, 2023
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

tyty 4 Aug 28, 2022
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Dongkyu Lee 4 Sep 18, 2022
Replication attempt for the Protein Folding Model

RGN2-Replica (WIP) To eventually become an unofficial working Pytorch implementation of RGN2, an state of the art model for MSA-less Protein Folding f

Eric Alcaide 36 Nov 29, 2022
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
An SE(3)-invariant autoencoder for generating the periodic structure of materials

Crystal Diffusion Variational AutoEncoder This software implementes Crystal Diffusion Variational AutoEncoder (CDVAE), which generates the periodic st

Tian Xie 94 Dec 10, 2022
This repository contains code released by Google Research.

This repository contains code released by Google Research.

Google Research 26.6k Dec 31, 2022
FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack

FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack Case study of the FCA. The code can be find in FCA. Cas

IDRL 21 Dec 15, 2022
JFB: Jacobian-Free Backpropagation for Implicit Models

JFB: Jacobian-Free Backpropagation for Implicit Models

Typal Research 28 Dec 11, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
[ICML 2021] A fast algorithm for fitting robust decision trees.

GROOT: Growing Robust Trees Growing Robust Trees (GROOT) is an algorithm that fits binary classification decision trees such that they are robust agai

Cyber Analytics Lab 17 Nov 21, 2022
Lightweight plotting to the terminal. 4x resolution via Unicode.

Uniplot Lightweight plotting to the terminal. 4x resolution via Unicode. When working with production data science code it can be handy to have plotti

Olav Stetter 203 Dec 29, 2022
Machine Learning Toolkit for Kubernetes

Kubeflow the cloud-native platform for machine learning operations - pipelines, training and deployment. Documentation Please refer to the official do

Kubeflow 12.1k Jan 03, 2023
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023