This code is an unofficial implementation of HiFiSinger.

Overview

HiFiSinger

This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers:

Chen, J., Tan, X., Luan, J., Qin, T., & Liu, T. Y. (2020). HiFiSinger: Towards High-Fidelity Neural Singing Voice Synthesis. arXiv preprint arXiv:2009.01776.
Ren, Y., Ruan, Y., Tan, X., Qin, T., Zhao, S., Zhao, Z., & Liu, T. Y. (2019). Fastspeech: Fast, robust and controllable text to speech. Advances in Neural Information Processing Systems, 32, 3171-3180.
Yamamoto, R., Song, E., & Kim, J. M. (2020, May). Parallel WaveGAN: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 6199-6203). IEEE.

Requirements

Please see the 'requirements.txt'.

Structure

Generator

  • In training, length regulator use target duration.

Discriminator

  • HiFiSinger uses Sub Frequency GAN(SF-GAN).
  • The frequency range of sampling is fixed and length range is randomized.

Used dataset

  • Code verification was conducted through a limited-sized, private Korean dataset.
  • Please report the information about any available open source dataset.
    • The set of midi files with syncronized lyric and high resolution vocal wave files

Hyper parameters

Before proceeding, please set the pattern, inference, and checkpoint paths in 'Hyper_Parameters.yaml' according to your environment.

  • Sound

    • Setting basic sound parameters.
  • Tokens

    • The number of Lyric token.
  • Max_Note

    • The highest note value for embedding.
  • Min/Max duration

    • Mel length which model use.
    • Min duration is used at pattern generating only.
  • Encoder

    • Setting the encoder.
  • Duration_Predictor

    • Setting for duration predictor
  • Decoder

    • Setting for decoder.
  • Discriminator

    • Setting for discriminator
    • In frequency range, frequency is the index of mel dimension.
      • The index must be equal or less than Sould.Mel_Dim.
  • Vocoder_Path

    • Setting the traced vocoder path.
    • To generate this, please check Here
  • Train

    • Setting the parameters of training.
  • Use_Mixed_Precision

  • Inference_Batch_Size

    • Setting the batch size when inference
  • Inference_Path

    • Setting the inference path
  • Checkpoint_Path

    • Setting the checkpoint path
  • Log_Path

    • Setting the tensorboard log path
  • Device

    • Setting which GPU device is used in multi-GPU enviornment.
    • Or, if using only CPU, please set '-1'. (But, I don't recommend while training.)

Generate pattern

  • There is no available open source dataset.

Inference file path while training for verification.

  • Inference_for_Training
    • There are two examples for inference.
    • It is midi file based script.

Run

Command

python Train.py -s 
  • -hp

    • The hyper paramter file path
    • This is required.
  • -s

    • The resume step parameter.
    • Default is 0.
Owner
Heejo You
Main focus: Psycholinguistics / Mechine learning / Deep learning
Heejo You
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
The PyTorch implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision The PyTorch implementation of DiscoBox: Weakly Supe

Shiyi Lan 1 Oct 23, 2021
Source code for paper "Deep Diffusion Models for Robust Channel Estimation", TBA.

diffusion-channels Source code for paper "Deep Diffusion Models for Robust Channel Estimation". Generic flow: Use 'matlab/main.mat' to generate traini

The University of Texas Computational Sensing and Imaging Lab 15 Dec 22, 2022
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
ServiceX Transformer that converts flat ROOT ntuples into columnwise data

ServiceX_Uproot_Transformer ServiceX Transformer that converts flat ROOT ntuples into columnwise data Usage You can invoke the transformer from the co

Vis 0 Jan 20, 2022
sense-py-AnishaBaishya created by GitHub Classroom

Compute Statistics Here we compute statistics for a bunch of numbers. This project uses the unittest framework to test functionality. Pass the tests T

1 Oct 21, 2021
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection

Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru

Siddhant Kumar 2 Feb 04, 2022
PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos

PyKale is a PyTorch library for multimodal learning and transfer learning as well as deep learning and dimensionality reduction on graphs, images, texts, and videos. By adopting a unified pipeline-ba

PyKale 370 Dec 27, 2022
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
PyTorch implementation of MICCAI 2018 paper "Liver Lesion Detection from Weakly-labeled Multi-phase CT Volumes with a Grouped Single Shot MultiBox Detector"

Grouped SSD (GSSD) for liver lesion detection from multi-phase CT Note: the MICCAI 2018 paper only covers the multi-phase lesion detection part of thi

Sang-gil Lee 36 Oct 12, 2022
The implementation of 'Image synthesis via semantic composition'.

Image synthesis via semantic synthesis [Project Page] by Yi Wang, Lu Qi, Ying-Cong Chen, Xiangyu Zhang, Jiaya Jia. Introduction This repository gives

DV Lab 71 Jan 06, 2023
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
Website for D2C paper

D2C This is the repository that contains source code for the D2C Website. If you find D2C useful for your work please cite: @article{sinha2021d2c au

1 Oct 21, 2021
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
Pytorch implementation of the Variational Recurrent Neural Network (VRNN).

VariationalRecurrentNeuralNetwork Pytorch implementation of the Variational RNN (VRNN), from A Recurrent Latent Variable Model for Sequential Data. Th

emmanuel 251 Dec 17, 2022
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023