A repository that finds a person who looks like you by using face recognition technology.

Overview

Find Your Twin

Hello everyone, I've always wondered how casting agencies do the casting for a scene where a certain actor is young or old for a movie or TV show. I respect the art of make-up, but I am one of those who think that a different actor should play in that scene.

If we look at the developments in computer vision in recent years, there will be no need for make-up in such cases. I think that face swapping and similar approaches will make great contributions to the cinema industry in this field.

In this project, we will take a look at the problem of casting agencies, which is the first thing I wonder about. We will have an open source CelebA dataset of celebrities. We will find the face closest to the face we have given as input from this dataset.

To run the project, you need to perform 2 steps. The first is to create an identity pool, and the second is to find the identity closest to the photo given as input in this pool.

According to GDPR, CCPA and KVKK images containing biometric information of individuals cannot be processed unless they consent.

Requirements

First of all, I suggest you to create a new environment in order not to break the environment you are using. Then you can find the required tools from requirements.txt

pip install -r requirements.txt

As the face recognition model, I use the PyTorch version of the ArcfaceR100 model from the insightface repository. You can download the weights by clicking this link (Only backbone.pth is enough). Then place it into src/models/backbone.pth.

1. Create Identity Pool

The identity pool to be created will process all images of a dataset one by one and save them to a pickle. If we need to go in accordance with the story, it can be said to process the images of the people in all the casting agencies one by one. This pool can be created with any dataset found on the Internet (FFHQ, CelebA-HQ, etc.). As I said before, I will use the CelebA dataset.

If you want to pass this process, the pool prepared with the CelebA dataset is available at this link.

If you are the lucky person who wants to prepare your pool in your own dataset, you should set the arguments. If your dataset is ready and you have downloaded the face recognition model, you can start creating an identity pool with the following command.

Format:
python create_pool.py --weightPath <Path of backbone.pth> --device <CUDA or CPU> --poolResultName <Pickle save name> --imagePaths <Your images path>

Example:
python create_pool.py --weightPath src/models/backbone.pth --device cuda:0 --poolResultName CelebrityPool2.pkl --imagePaths CelebaImages

2. Find Your Twin

You've created your pool and now it's time to try it out. First of all, you need one input image to perform the test. I left mine for testing if you want to use it :) There are two parameters in the command you will use here, except the ones you set when creating the pool.

Format:
python create_pool.py --yourImage <Input inference image> --resultImageName <Your twin image name>

Example:
python create_pool.py --yourImage cengizhan.jpg --resultImageName Twin.jpg

The magic happened and you found the closest face to your own in the identity pool you created.

InputImage TwinImage

I think the face that comes out most similar to me in dataset is not very similar, but you should try it too. Because this handsomeness can also be unique.

Owner
Cengizhan Yurdakul
Computer Vision Engineer
Cengizhan Yurdakul
Proof-Of-Concept Piano-Drums Music AI Model/Implementation

Rock Piano "When all is one and one is all, that's what it is to be a rock and not to roll." ---Led Zeppelin, "Stairway To Heaven" Proof-Of-Concept Pi

Alex 4 Nov 28, 2021
Official implementation of ETH-XGaze dataset baseline

ETH-XGaze baseline Official implementation of ETH-XGaze dataset baseline. ETH-XGaze dataset ETH-XGaze dataset is a gaze estimation dataset consisting

Xucong Zhang 134 Jan 03, 2023
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 03, 2023
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021
Google AI Open Images - Object Detection Track: Open Solution

Google AI Open Images - Object Detection Track: Open Solution This is an open solution to the Google AI Open Images - Object Detection Track 😃 More c

minerva.ml 46 Jun 22, 2022
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
Differentiable Simulation of Soft Multi-body Systems

Differentiable Simulation of Soft Multi-body Systems Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, Ming C. Lin [Paper] [Code] Updates The C++ backend s

YilingQiao 26 Dec 23, 2022
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 04, 2022
Raptor-Multi-Tool - Raptor Multi Tool With Python

Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will

Aran 44 Jan 04, 2023
Source code for the paper "SEPP: Similarity Estimation of Predicted Probabilities for Defending and Detecting Adversarial Text" PACLIC 2021

Adversarial text generator Refer to "adversarial_text_generator"[https://github.com/quocnsh/SEPP_generator] project for generating adversarial texts A

0 Oct 05, 2021
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
Implementation of U-Net and SegNet for building segmentation

Specialized project Created by Katrine Nguyen and Martin Wangen-Eriksen as a part of our specialized project at Norwegian University of Science and Te

Martin.w-e 3 Dec 07, 2022
basic tutorial on pytorch

Quick Tutorial on PyTorch PyTorch Basics Linear Regression Logistic Regression Artificial Neural Networks Convolutional Neural Networks Recurrent Neur

7 Sep 15, 2022
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
A collection of scripts I developed for personal and working projects.

A collection of scripts I developed for personal and working projects Table of contents Introduction Repository diagram structure List of scripts pyth

Gianluca Bianco 109 Dec 26, 2022
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022