This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

Overview

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields

Project Page | Paper | Supplementary | Video | Slides | Blog | Talk

Add Clevr Tranlation Horizontal Cars Interpolate Shape Faces

If you find our code or paper useful, please cite as

@inproceedings{GIRAFFE,
    title = {GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields},
    author = {Niemeyer, Michael and Geiger, Andreas},
    booktitle = {Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
    year = {2021}
}

TL; DR - Quick Start

Rotating Cars Tranlation Horizontal Cars Tranlation Horizontal Cars

First you have to make sure that you have all dependencies in place. The simplest way to do so, is to use anaconda.

You can create an anaconda environment called giraffe using

conda env create -f environment.yml
conda activate giraffe

You can now test our code on the provided pre-trained models. For example, simply run

python render.py configs/256res/cars_256_pretrained.yaml

This script should create a model output folder out/cars256_pretrained. The animations are then saved to the respective subfolders in out/cars256_pretrained/rendering.

Usage

Datasets

To train a model from scratch or to use our ground truth activations for evaluation, you have to download the respective dataset.

For this, please run

bash scripts/download_dataset.sh

and following the instructions. This script should download and unpack the data automatically into the data/ folder.

Controllable Image Synthesis

To render images of a trained model, run

python render.py CONFIG.yaml

where you replace CONFIG.yaml with the correct config file. The easiest way is to use a pre-trained model. You can do this by using one of the config files which are indicated with *_pretrained.yaml.

For example, for our model trained on Cars at 256x256 pixels, run

python render.py configs/256res/cars_256_pretrained.yaml

or for celebA-HQ at 256x256 pixels, run

python render.py configs/256res/celebahq_256_pretrained.yaml

Our script will automatically download the model checkpoints and render images. You can find the outputs in the out/*_pretrained folders.

Please note that the config files *_pretrained.yaml are only for evaluation or rendering, not for training new models: when these configs are used for training, the model will be trained from scratch, but during inference our code will still use the pre-trained model.

FID Evaluation

For evaluation of the models, we provide the script eval.py. You can run it using

python eval.py CONFIG.yaml

The script generates 20000 images and calculates the FID score.

Note: For some experiments, the numbers in the paper might slightly differ because we used the evaluation protocol from GRAF to fairly compare against the methods reported in GRAF.

Training

Finally, to train a new network from scratch, run

python train.py CONFIG.yaml

where you replace CONFIG.yaml with the name of the configuration file you want to use.

You can monitor on http://localhost:6006 the training process using tensorboard:

cd OUTPUT_DIR
tensorboard --logdir ./logs

where you replace OUTPUT_DIR with the respective output directory. For available training options, please take a look at configs/default.yaml.

2D-GAN Baseline

For convinience, we have implemented a 2D-GAN baseline which closely follows this GAN_stability repo. For example, you can train a 2D-GAN on CompCars at 64x64 pixels similar to our GIRAFFE method by running

python train.py configs/64res/cars_64_2dgan.yaml

Using Your Own Dataset

If you want to train a model on a new dataset, you first need to generate ground truth activations for the intermediate or final FID calculations. For this, you can use the script in scripts/calc_fid/precalc_fid.py. For example, if you want to generate an FID file for the comprehensive cars dataset at 64x64 pixels, you need to run

python scripts/precalc_fid.py  "data/comprehensive_cars/images/*.jpg" --regex True --gpu 0 --out-file "data/comprehensive_cars/fid_files/comprehensiveCars_64.npz" --img-size 64

or for LSUN churches, you need to run

python scripts/precalc_fid.py path/to/LSUN --class-name scene_categories/church_outdoor_train_lmdb --lsun True --gpu 0 --out-file data/church/fid_files/church_64.npz --img-size 64

Note: We apply the same transformations to the ground truth images for this FID calculation as we do during training. If you want to use your own dataset, you need to adjust the image transformations in the script accordingly. Further, you might need to adjust the object-level and camera transformations to your dataset.

Evaluating Generated Images

We provide the script eval_files.py for evaluating the FID score of your own generated images. For example, if you would like to evaluate your images on CompCars at 64x64 pixels, save them to an npy file and run

python eval_files.py --input-file "path/to/your/images.npy" --gt-file "data/comprehensive_cars/fid_files/comprehensiveCars_64.npz"

Futher Information

More Work on Implicit Representations

If you like the GIRAFFE project, please check out related works on neural representions from our group:

A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download

Bubbliiiing 31 Nov 25, 2022
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Proximal Backpropagation Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient s

Thomas Frerix 40 Dec 17, 2022
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
🛠️ Tools for Transformers compression using Lightning ⚡

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

Jules Belveze 66 Dec 11, 2022
RGB-D Local Implicit Function for Depth Completion of Transparent Objects

RGB-D Local Implicit Function for Depth Completion of Transparent Objects [Project Page] [Paper] Overview This repository maintains the official imple

NVIDIA Research Projects 43 Dec 12, 2022
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 05, 2022
Pytorch implementation of the paper Time-series Generative Adversarial Networks

TimeGAN-pytorch Pytorch implementation of the paper Time-series Generative Adversarial Networks presented at NeurIPS'19. Jinsung Yoon, Daniel Jarrett

Zhiwei ZHANG 21 Nov 24, 2022
This repository contains a pytorch implementation of "StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision".

StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision | Project Page | Paper | This repository contains a pytorch implementation of "St

87 Dec 09, 2022