Semantic Segmentation Suite in TensorFlow

Overview

Semantic Segmentation Suite in TensorFlow

alt-text-10

News

What's New

  • This repo has been depricated and will no longer be handling issues. Feel free to use as is :)

Description

This repository serves as a Semantic Segmentation Suite. The goal is to easily be able to implement, train, and test new Semantic Segmentation models! Complete with the following:

  • Training and testing modes
  • Data augmentation
  • Several state-of-the-art models. Easily plug and play with different models
  • Able to use any dataset
  • Evaluation including precision, recall, f1 score, average accuracy, per-class accuracy, and mean IoU
  • Plotting of loss function and accuracy over epochs

Any suggestions to improve this repository, including any new segmentation models you would like to see are welcome!

You can also check out my Transfer Learning Suite.

Citing

If you find this repository useful, please consider citing it using a link to the repo :)

Frontends

The following feature extraction models are currently made available:

Models

The following segmentation models are currently made available:

Files and Directories

  • train.py: Training on the dataset of your choice. Default is CamVid

  • test.py: Testing on the dataset of your choice. Default is CamVid

  • predict.py: Use your newly trained model to run a prediction on a single image

  • helper.py: Quick helper functions for data preparation and visualization

  • utils.py: Utilities for printing, debugging, testing, and evaluation

  • models: Folder containing all model files. Use this to build your models, or use a pre-built one

  • CamVid: The CamVid datatset for Semantic Segmentation as a test bed. This is the 32 class version

  • checkpoints: Checkpoint files for each epoch during training

  • Test: Test results including images, per-class accuracies, precision, recall, and f1 score

Installation

This project has the following dependencies:

  • Numpy sudo pip install numpy

  • OpenCV Python sudo apt-get install python-opencv

  • TensorFlow sudo pip install --upgrade tensorflow-gpu

Usage

The only thing you have to do to get started is set up the folders in the following structure:

├── "dataset_name"                   
|   ├── train
|   ├── train_labels
|   ├── val
|   ├── val_labels
|   ├── test
|   ├── test_labels

Put a text file under the dataset directory called "class_dict.csv" which contains the list of classes along with the R, G, B colour labels to visualize the segmentation results. This kind of dictionairy is usually supplied with the dataset. Here is an example for the CamVid dataset:

name,r,g,b
Animal,64,128,64
Archway,192,0,128
Bicyclist,0,128, 192
Bridge,0, 128, 64
Building,128, 0, 0
Car,64, 0, 128
CartLuggagePram,64, 0, 192
Child,192, 128, 64
Column_Pole,192, 192, 128
Fence,64, 64, 128
LaneMkgsDriv,128, 0, 192
LaneMkgsNonDriv,192, 0, 64
Misc_Text,128, 128, 64
MotorcycleScooter,192, 0, 192
OtherMoving,128, 64, 64
ParkingBlock,64, 192, 128
Pedestrian,64, 64, 0
Road,128, 64, 128
RoadShoulder,128, 128, 192
Sidewalk,0, 0, 192
SignSymbol,192, 128, 128
Sky,128, 128, 128
SUVPickupTruck,64, 128,192
TrafficCone,0, 0, 64
TrafficLight,0, 64, 64
Train,192, 64, 128
Tree,128, 128, 0
Truck_Bus,192, 128, 192
Tunnel,64, 0, 64
VegetationMisc,192, 192, 0
Void,0, 0, 0
Wall,64, 192, 0

Note: If you are using any of the networks that rely on a pre-trained ResNet, then you will need to download the pre-trained weights using the provided script. These are currently: PSPNet, RefineNet, DeepLabV3, DeepLabV3+, GCN.

Then you can simply run train.py! Check out the optional command line arguments:

usage: train.py [-h] [--num_epochs NUM_EPOCHS]
                [--checkpoint_step CHECKPOINT_STEP]
                [--validation_step VALIDATION_STEP] [--image IMAGE]
                [--continue_training CONTINUE_TRAINING] [--dataset DATASET]
                [--crop_height CROP_HEIGHT] [--crop_width CROP_WIDTH]
                [--batch_size BATCH_SIZE] [--num_val_images NUM_VAL_IMAGES]
                [--h_flip H_FLIP] [--v_flip V_FLIP] [--brightness BRIGHTNESS]
                [--rotation ROTATION] [--model MODEL] [--frontend FRONTEND]

optional arguments:
  -h, --help            show this help message and exit
  --num_epochs NUM_EPOCHS
                        Number of epochs to train for
  --checkpoint_step CHECKPOINT_STEP
                        How often to save checkpoints (epochs)
  --validation_step VALIDATION_STEP
                        How often to perform validation (epochs)
  --image IMAGE         The image you want to predict on. Only valid in
                        "predict" mode.
  --continue_training CONTINUE_TRAINING
                        Whether to continue training from a checkpoint
  --dataset DATASET     Dataset you are using.
  --crop_height CROP_HEIGHT
                        Height of cropped input image to network
  --crop_width CROP_WIDTH
                        Width of cropped input image to network
  --batch_size BATCH_SIZE
                        Number of images in each batch
  --num_val_images NUM_VAL_IMAGES
                        The number of images to used for validations
  --h_flip H_FLIP       Whether to randomly flip the image horizontally for
                        data augmentation
  --v_flip V_FLIP       Whether to randomly flip the image vertically for data
                        augmentation
  --brightness BRIGHTNESS
                        Whether to randomly change the image brightness for
                        data augmentation. Specifies the max bightness change
                        as a factor between 0.0 and 1.0. For example, 0.1
                        represents a max brightness change of 10% (+-).
  --rotation ROTATION   Whether to randomly rotate the image for data
                        augmentation. Specifies the max rotation angle in
                        degrees.
  --model MODEL         The model you are using. See model_builder.py for
                        supported models
  --frontend FRONTEND   The frontend you are using. See frontend_builder.py
                        for supported models

Results

These are some sample results for the CamVid dataset with 11 classes (previous research version).

In training, I used a batch size of 1 and image size of 352x480. The following results are for the FC-DenseNet103 model trained for 300 epochs. I used RMSProp with learning rate 0.001 and decay 0.995. I did not use any data augmentation like in the paper. I also didn't use any class balancing. These are just some quick and dirty example results.

Note that the checkpoint files are not uploaded to this repository since they are too big for GitHub (greater than 100 MB)

Class Original Accuracy My Accuracy
Sky 93.0 94.1
Building 83.0 81.2
Pole 37.8 38.3
Road 94.5 97.5
Pavement 82.2 87.9
Tree 77.3 75.5
SignSymbol 43.9 49.7
Fence 37.1 69.0
Car 77.3 87.0
Pedestrian 59.6 60.3
Bicyclist 50.5 75.3
Unlabelled N/A 40.9
Global 91.5 89.6
Loss vs Epochs Val. Acc. vs Epochs
alt text-1 alt text-2
Original GT Result
alt-text-3 alt-text-4 alt-text-5
Owner
George Seif
Machine Learning Engineer | twitter.com/GeorgeSeif94
George Seif
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 36 Oct 31, 2022
Accelerated NLP pipelines for fast inference on CPU and GPU. Built with Transformers, Optimum and ONNX Runtime.

Optimum Transformers Accelerated NLP pipelines for fast inference 🚀 on CPU and GPU. Built with 🤗 Transformers, Optimum and ONNX runtime. Installatio

Aleksey Korshuk 115 Dec 16, 2022
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
RAMA: Rapid algorithm for multicut problem

RAMA: Rapid algorithm for multicut problem Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without

Paul Swoboda 60 Dec 13, 2022
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
A PyTorch implementation of DenseNet.

A PyTorch Implementation of DenseNet This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Conv

Brandon Amos 771 Dec 15, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
Maximum Spatial Perturbation for Image-to-Image Translation (Official Implementation)

MSPC for I2I This repository is by Yanwu Xu and contains the PyTorch source code to reproduce the experiments in our CVPR2022 paper Maximum Spatial Pe

51 Dec 14, 2022
4th place solution for the SIGIR 2021 challenge.

SIGIR-2021 (Tinkoff.AI) How to start Download train and test data: https://sigir-ecom.github.io/data-task.html Place it under sigir-2021/data/. Run py

Tinkoff.AI 4 Jul 01, 2022
[NeurIPS 2021] Low-Rank Subspaces in GANs

Low-Rank Subspaces in GANs Figure: Image editing results using LowRankGAN on StyleGAN2 (first three columns) and BigGAN (last column). Low-Rank Subspa

112 Dec 28, 2022
This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Auto-Lambda This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationship

Shikun Liu 76 Dec 20, 2022
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
Implementation of the paper ''Implicit Feature Refinement for Instance Segmentation''.

Implicit Feature Refinement for Instance Segmentation This repository is an official implementation of the ACM Multimedia 2021 paper Implicit Feature

Lufan Ma 17 Dec 28, 2022
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 06, 2023
Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation

Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation This repository contains the Pytorch implementation of the proposed

Devavrat Tomar 19 Nov 10, 2022
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Code for our ACL 2021 paper "One2Set: Generating Diverse Keyphrases as a Set"

One2Set This repository contains the code for our ACL 2021 paper “One2Set: Generating Diverse Keyphrases as a Set”. Our implementation is built on the

Jiacheng Ye 63 Jan 05, 2023