A PyTorch implementation of DenseNet.

Overview

A PyTorch Implementation of DenseNet

This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Convolutional Networks by G. Huang, Z. Liu, K. Weinberger, and L. van der Maaten. This implementation gets a CIFAR-10+ error rate of 4.77 with a 100-layer DenseNet-BC with a growth rate of 12. Their official implementation and links to many other third-party implementations are available in the liuzhuang13/DenseNet repo on GitHub.

Why DenseNet?

As this table from the DenseNet paper shows, it provides competitive state of the art results on CIFAR-10, CIFAR-100, and SVHN.

Why yet another DenseNet implementation?

PyTorch is a great new framework and it's nice to have these kinds of re-implementations around so that they can be integrated with other PyTorch projects.

How do you know this implementation is correct?

Interestingly while implementing this, I had a lot of trouble getting it to converge and looked at every part of the code closer than I usually would. I compared all of the model's hidden states and gradients with the official implementation to make sure my code was correct and even trained a VGG-style network on CIFAR-10 with the training code here. It turns out that I uncovered a new critical PyTorch bug (now fixed) that was causing this.

I have left around my original message about how this isn't working and the things that I have checked in this document. I think this should be interesting for other people to see my development and debugging strategies when having issues implementing a model that's known to converge. I also started this PyTorch forum thread, which has a few other discussion points. You may also be interested in my script that compares PyTorch gradients to Torch gradients and my script that numerically checks PyTorch gradients.

My convergence issues were due to a critical PyTorch bug related to using torch.cat with convolutions with cuDNN enabled (which it is by default when CUDA is used). This bug caused incorrect gradients and the fix to this bug is to disable cuDNN (which doesn't have to be done anymore because it's fixed). The oversight in my debugging strategies that caused me to not find this error is that I did not think to disable cuDNN. Until now, I have assumed that the cuDNN option in frameworks are bug-free, but have learned that this is not always the case. I may have also found something if I would have numerically debugged torch.cat layers with convolutions instead of fully connected layers.

Adam fixed the PyTorch bug that caused this in this PR and has been merged into Torch's master branch. If you are interested in using the DenseNet code in this repository, make sure your PyTorch version contains this PR and was downloaded after 2017-02-10.

What does the PyTorch compute graph of the model look like?

You can see the compute graph here, which I created with make_graph.py, which I copied from Adam Paszke's gist. Adam says PyTorch will soon have a better way to create compute graphs.

How does this implementation perform?

By default, this repo trains a 100-layer DenseNet-BC with an growth rate of 12 on the CIFAR-10 dataset with data augmentations. Due to GPU memory sizes, this is the largest model I am able to run. The paper reports a final test error of 4.51 with this architecture and we obtain a final test error of 4.77.

Why don't people use ADAM instead of SGD for training ResNet-style models?

I also tried training a net with ADAM and found that it didn't converge as well with the default hyper-parameters compared to SGD with a reasonable learning rate schedule.

What about the non-BC version?

I haven't tested this as thoroughly, you should make sure it's working as expected if you plan to use and modify it. Let me know if you find anything wrong with it.

A paradigm for ML code

I like to include a few features in my projects that I don't see in some other re-implementations that are present in this repo. The training code in train.py uses argparse so the batch size and some other hyper-params can easily be changed and as the model is training, progress is written out to csv files in a work directory also defined by the arguments. Then a separate script plot.py plots the progress written out by the training script. The training script calls plot.py after every epoch, but it can importantly be run on its own so figures can be tweaked without re-running the entire experiment.

Help wanted: Improving memory utilization and multi-GPU support

I think there are ways to improve the memory utilization in this code as in the the official space-efficient Torch implementation. I also would be interested in multi-GPU support.

Running the code and viewing convergence

First install PyTorch (ideally in an anaconda3 distribution). ./train.py will create a model, start training it, and save progress to args.save, which is work/cifar10.base by default. The training script will call plot.py after every epoch to create plots from the saved progress.

Citations

The following is a BibTeX entry for the DenseNet paper that you should cite if you use this model.

@article{Huang2016Densely,
  author = {Huang, Gao and Liu, Zhuang and Weinberger, Kilian Q.},
  title = {Densely Connected Convolutional Networks},
  journal = {arXiv preprint arXiv:1608.06993},
  year = {2016}
}

If you use this implementation, please also consider citing this implementation and code repository with the following BibTeX or plaintext entry. The BibTeX entry requires the url LaTeX package.

@misc{amos2017densenet,
  title = {{A PyTorch Implementation of DenseNet}},
  author = {Amos, Brandon and Kolter, J. Zico},
  howpublished = {\url{https://github.com/bamos/densenet.pytorch}},
  note = {Accessed: [Insert date here]}
}

Brandon Amos, J. Zico Kolter
A PyTorch Implementation of DenseNet
https://github.com/bamos/densenet.pytorch.
Accessed: [Insert date here]

Licensing

This repository is Apache-licensed.

Owner
Brandon Amos
Brandon Amos
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

[CVPRW 2021] - Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation

Anirudh S Chakravarthy 6 May 03, 2022
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
TUPÃ was developed to analyze electric field properties in molecular simulations

TUPÃ: Electric field analyses for molecular simulations What is TUPÃ? TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine

Marcelo D. Polêto 10 Jul 17, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
NeuPy is a Tensorflow based python library for prototyping and building neural networks

NeuPy v0.8.2 NeuPy is a python library for prototyping and building neural networks. NeuPy uses Tensorflow as a computational backend for deep learnin

Yurii Shevchuk 729 Jan 03, 2023
👐OpenHands : Making Sign Language Recognition Accessible (WiP 🚧👷‍♂️🏗)

👐 OpenHands: Sign Language Recognition Library Making Sign Language Recognition Accessible Check the documentation on how to use the library: ReadThe

AI4Bhārat 69 Dec 12, 2022
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy achievi

THUDM 540 Dec 30, 2022
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation

LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!

linksense 237 Jan 05, 2023
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch

Next Word Prediction Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch 🎬 Project Demo ✔ Application is hosted on Streamlit. You can see t

Vivek7 3 Aug 26, 2022
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
A Marvelous ChatBot implement using PyTorch.

PyTorch Marvelous ChatBot [Update] it's 2019 now, previously model can not catch up state-of-art now. So we just move towards the future a transformer

JinTian 223 Oct 18, 2022
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;

Men Yifang 400 Dec 29, 2022