This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

Related tags

Deep LearningCEDR
Overview

CEDR

This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper:

"Contrastive Embedding Distribution Refinement and Entropy-Aware Attention for 3D Point Cloud Classification"

Updates

  • 03/01/2022 The paper is currently under review, and the codes will be released in the future.
  • 06/01/2022 codes for both model.py and main.py are available now.
  • 10/01/2022 Update a pre-trained model (OA: 82.90%, mAcc: 80.60%) on ScanObjectNN via google drive.
  • 10/01/2022 Pre-trained model (OA: 93.10%, mAcc: 91.10%) on ModelNet40 is available at google drive.

Network Architecture

image

Implementation Platforms

  • Python 3.6
  • Pytorch 0.4.0 with Cuda 9.1
  • Higher Python/Pytorch/Cuda versions should also be compatible

ModelNet40 Experiment

Test the pre-trained model:

  • download ModelNet40, unzip and move modelnet40_ply_hdf5_2048 folder to ./data

  • put the pre-trained model under ./checkpoints/modelnet

  • then run (more settings can be modified in main.py):

python main.py --exp_name=gbnet_modelnet40_eval --model=gbnet --dataset=modelnet40 --eval=True --model_path=checkpoints/modelnet/gbnet_modelnet40.t7

ScanObjectNN Experiment

Test the pre-trained model:

  • download ScanObjectNN, and extract both training_objectdataset_augmentedrot_scale75.h5 and test_objectdataset_augmentedrot_scale75.h5 files to ./data
  • put the pre-trained model under ./checkpoints/gbnet_scanobjectnn
  • then run (more settings can be modified in main.py):
python main.py --exp_name=gbnet_scanobjectnn_eval --model=gbnet --dataset=ScanObjectNN --eval=True --model_path=checkpoints/gbnet_scanobjectnn/gbnet_scanobjectnn.t7

Pre-trained Models

  • Python 3.6, Pytorch 0.4.0, Cuda 9.1
  • 8 GeForce RTX 2080Ti GPUs
  • using default training settings as in main.py
Model Dataset #Points Data
Augmentation
Performance
on Test Set
Download
Link
PointNet++ ModelNet40 1024 random scaling
and translation
overall accuracy: 93.10%
average class accuracy: 91.10%
google drive
GBNet ScanObjectNN 1024 random scaling
and translation
overall accuracy: 82.90%
average class accuracy: 80.60%
google drive

Acknowledgement

The code is built on GBNet. We thank the authors for sharing the codes. We also thank the Big Data Center of Southeast University for providing the facility support on the numerical calculations in this paper.

Owner
phoenix
phoenix
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
A sketch extractor for anime/illustration.

Anime2Sketch Anime2Sketch: A sketch extractor for illustration, anime art, manga By Xiaoyu Xiang Updates 2021.5.2: Upload more example results of anim

Xiaoyu Xiang 1.6k Jan 01, 2023
DeepOBS: A Deep Learning Optimizer Benchmark Suite

DeepOBS - A Deep Learning Optimizer Benchmark Suite DeepOBS is a benchmarking suite that drastically simplifies, automates and improves the evaluation

Aaron Bahde 7 May 12, 2020
MPLP: Metapath-Based Label Propagation for Heterogenous Graphs

MPLP: Metapath-Based Label Propagation for Heterogenous Graphs Results on MAG240M Here, we demonstrate the following performance on the MAG240M datase

Qiuying Peng 10 Jun 28, 2022
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

On the Equivalence between Neural Network and Support Vector Machine Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Suppo

Leslie 8 Oct 25, 2022
IOT: Instance-wise Layer Reordering for Transformer Structures

Introduction This repository contains the code for Instance-wise Ordered Transformer (IOT), which is introduced in the ICLR2021 paper IOT: Instance-wi

IOT 19 Nov 15, 2022
Continuous Security Group Rule Change Detection & Response at scale

Introduction Get notified of Security Group Changes across all AWS Accounts & Regions in an AWS Organization, with the ability to respond/revert those

Raajhesh Kannaa Chidambaram 3 Aug 13, 2022
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
PG2Net: Personalized and Group PreferenceGuided Network for Next Place Prediction

PG2Net PG2Net:Personalized and Group Preference Guided Network for Next Place Prediction Datasets Experiment results on two Foursquare check-in datase

Urban Mobility 5 Dec 20, 2022
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

149 Dec 15, 2022
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.

SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in

Felix Jin 3 Mar 31, 2022
Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

Christian Steinmetz 94 Dec 29, 2022
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022