Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

Related tags

Deep LearningCAPTRA
Overview

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

teaser

Introduction

This is the official PyTorch implementation of our paper CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds. This repository is still under construction.

For more information, please visit our project page.

Result visualization on real data. Our models, trained on synthetic data only, can directly generalize to real data, assuming the availability of object masks but not part masks. Left: results on a laptop trajectory from BMVC dataset. Right: results on a real drawers trajectory we captured, where a Kinova Jaco2 arm pulls out the top drawer.

Citation

If you find our work useful in your research, please consider citing:

@article{weng2021captra,
	title={CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds},
	author={Weng, Yijia and Wang, He and Zhou, Qiang and Qin, Yuzhe and Duan, Yueqi and Fan, Qingnan and Chen, Baoquan and Su, Hao and Guibas, Leonidas J},
	journal={arXiv preprint arXiv:2104.03437},
	year={2021}

Updates

  • [2021/04/14] Released code, data, and pretrained models for testing & evaluation.

Installation

  • Our code has been tested with

    • Ubuntu 16.04, 20.04, and macOS(CPU only)
    • CUDA 11.0
    • Python 3.7.7
    • PyTorch 1.6.0
  • We recommend using Anaconda to create an environment named captra dedicated to this repository, by running the following:

    conda env create -n captra python=3.7
    conda activate captra
  • Create a directory for code, data, and experiment checkpoints.

    mkdir captra && cd captra
  • Clone the repository

    git clone https://github.com/HalfSummer11/CAPTRA.git
    cd CAPTRA
  • Install dependencies.

    pip install -r requirements.txt
  • Compile the CUDA code for PointNet++ backbone.

    cd network/models/pointnet_lib
    python setup.py install

Datasets

  • Create a directory for all datasets under captra

    mkdir data && cd data
    • Make sure to point basepath in CAPTRA/configs/obj_config/obj_info_*.yml to your dataset if you put it at a different location.

NOCS-REAL275

mkdir nocs_data && cd nocs_data

Test

  • Download and unzip nocs_model_corners.tar, where the 3D bounding boxes of normalized object models are saved.

    wget http://download.cs.stanford.edu/orion/captra/nocs_model_corners.tar
    tar -xzvf nocs_real_corners.tar
  • Create nocs_full to hold original NOCS data. Download and unzip "Real Dataset - Test" from the original NOCS dataset, which contains 6 real test trajectories.

    mkdir nocs_full && cd nocs_full
    wget http://download.cs.stanford.edu/orion/nocs/real_test.zip
    unzip real_test.zip
  • Generate and run the pre-processing script

    cd CAPTRA/datasets/nocs_data/preproc_nocs
    python generate_all.py --data_path ../../../../data/nocs_data --data_type=test_only --parallel --num_proc=10 > nocs_preproc.sh # generate the script for data preprocessing
    # parallel & num_proc specifies the number of parallel processes in the following procedure
    bash nocs_preproc.sh # the actual data preprocessing
  • After the steps above, the folder should look like File Structure - Dataset Folder Structure.

SAPIEN Synthetic Articulated Object Dataset

mkdir sapien_data && cd sapien_data

Test

  • Download and unzip object URDF models and testing trajectories

    wget http://download.cs.stanford.edu/orion/captra/sapien_urdf.tar
    wget http://download.cs.stanford.edu/orion/captra/sapien_test.tar
    tar -xzvf sapien_urdf.tar
    tar -xzvf sapien_test.tar

Testing & Evaluation

Download Pretrained Model Checkpoints

  • Create a folder runs under captra for experiments

    mkdir runs && cd runs
  • Download our pretrained model checkpoints for

  • Unzip them in runs

    tar -xzvf nocs_ckpt.tar  

    which should give

    runs
    ├── 1_bottle_rot 	# RotationNet for the bottle category
    ├── 1_bottle_coord 	# CoordinateNet for the bottle category
    ├── 2_bowl_rot 
    └── ...

Testing

  • To generate pose predictions for a certain category, run the corresponding script in CAPTRA/scripts (without further specification, all scripts are run from CAPTRA), e.g. for the bottle category from NOCS-REAL275,

    bash scripts/track/nocs/1_bottle.sh
  • The predicted pose will be saved under the experiment folder 1_bottle_rot (see File Structure - Experiment Folder Structure).

  • To test the tracking speed for articulated objects in SAPIEN, make sure to set --batch_size=1 in the script. You may use --dataset_length=500 to avoid running through the whole test set.

Evaluation

  • To evaluate the pose predictions produced in the previous step, uncomment and run the corresponding line in CAPTRA/scripts/eval.sh, e.g. for the bottle category from NOCS-REAL275, the corresponding line is

    python misc/eval/eval.py --config config_track.yml --obj_config obj_info_nocs.yml --obj_category=1 --experiment_dir=../runs/1_bottle_rot

File Structure

Overall Structure

The working directory should be organized as follows.

captra
├── CAPTRA		# this repository
├── data			# datasets
│   ├── nocs_data		# NOCS-REAL275
│   └── sapien_data	# synthetic dataset of articulated objects from SAPIEN
└── runs			# folders for individual experiments
    ├── 1_bottle_coord
    ├── 1_bottle_rot
    └── ...

Code Structure

Below is an overview of our code. Only the most relevant folders/files are shown.

CAPTRA
├── configs		# configuration files
│   ├── all_config		# experiment configs
│   ├── pointnet_config 	# pointnet++ configs (radius, etc)
│   ├── obj_config		# dataset configs
│   └── config.py		# parser
├── datasets	# data preprocessing & dataset definitions
│   ├── arti_data		# articulated data
│   │   └── ...
│   ├── nocs_data		# NOCS-REAL275 data
│   │   ├── ...
│   │   └── preproc_nocs	# prepare nocs data
│   └── ...			# utility functions
├── pose_utils		# utility functions for pose/bounding box computation
├── utils.py
├── misc		# evaluation and visualization
│   ├── eval
│   └── visualize
├── scripts		# scripts for training/testing
└── network		# main part
    ├── data		# torch dataloader definitions
    ├── models		# model definition
    │   ├── pointnet_lib
    │   ├── pointnet_utils.py
    │   ├── backbones.py
    │   ├── blocks.py		# the above defines backbone/building blocks
    │   ├── loss.py
    │   ├── networks.py		# defines CoordinateNet and RotationNet
    │   └── model.py		# defines models for training/tracking
    ├── trainer.py	# training agent
    ├── parse_args.py		# parse arguments for train/test
    ├── test.py		# test
    ├── train.py	# train
    └── train_nocs_mix.py	# finetune with a mixture of synthetic/real data

Experiment Folder Structure

For each experiment, a dedicated folder in captra/runs is organized as follows.

1_bottle_rot
├── log		# training/testing log files
│   └── log.txt
├── ckpt	# model checkpoints
│   ├── model_0001.pt
│   └── ...
└── results
    ├── data*		# per-trajectory raw network outputs 
    │   ├── bottle_shampoo_norm_scene_4.pkl
    │   └── ...
    ├── err.csv**	# per-frame error	
    └── err.pkl**	# per-frame error
*: generated after testing with --save
**: generated after running misc/eval/eval.py

Dataset Folder Structure

nocs_data
├── nocs_model_corners		# instance bounding box information	
├── nocs_full		 	# original NOCS data, organized in frames (not object-centric)
│   ├── real_test
│   │   ├── scene_1
│   │   └── ...
│   ├── real_train
│   ├── train
│   └── val			
├── instance_list*		# collects each instance's occurences in nocs_full/*/
├── render*			# per-instance segmented data for training
├── preproc**			# cashed data 	
└── splits**			# data lists for train/test	
*: generated after data-preprocessing
**: generated during training/testing

sapien_data
├── urdf			# instance URDF models
├── render_seq			# testing trajectories
├── render**			# single-frame training/validation data
├── preproc_seq*		# cashed testing trajectory data	
├── preproc**			# cashed testing trajectory data
└── splits*			# data lists for train/test	
*: generated during training/testing
**: training

Acknowledgements

This implementation is based on the following repositories. We thank the authors for open sourcing their great works!

Owner
Yijia Weng
Another day, another destiny.
Yijia Weng
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer

Time Series Research with Torch 这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer。 建立原因 相较于mxnet和TF,Torch框架中的神经网络层需要提前指定输入维度: # 建立线性层 TensorF

Chi Zhang 85 Dec 29, 2022
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
Code accompanying the paper "Knowledge Base Completion Meets Transfer Learning"

Knowledge Base Completion Meets Transfer Learning This code accompanies the paper Knowledge Base Completion Meets Transfer Learning published at EMNLP

14 Nov 27, 2022
ICLR 2021: Pre-Training for Context Representation in Conversational Semantic Parsing

SCoRe: Pre-Training for Context Representation in Conversational Semantic Parsing This repository contains code for the ICLR 2021 paper "SCoRE: Pre-Tr

Microsoft 28 Oct 02, 2022
Source code for the paper "SEPP: Similarity Estimation of Predicted Probabilities for Defending and Detecting Adversarial Text" PACLIC 2021

Adversarial text generator Refer to "adversarial_text_generator"[https://github.com/quocnsh/SEPP_generator] project for generating adversarial texts A

0 Oct 05, 2021
CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation

CDGAN CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation CDGAN Implementation in PyTorch This is the imple

Kancharagunta Kishan Babu 6 Apr 19, 2022
Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective

Unofficial pytorch implementation of the paper "Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective"

16 Nov 21, 2022
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 02, 2023
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Soohwan Kim 59 Dec 08, 2022
Using some basic methods to show linkages and transformations of robotic arms

roboticArmVisualizer Python GUI application to create custom linkages and adjust joint angles. In the future, I plan to add 2d inverse kinematics solv

Sandesh Banskota 1 Nov 19, 2021
Implementation for ACProp ( Momentum centering and asynchronous update for adaptive gradient methdos, NeurIPS 2021)

This repository contains code to reproduce results for submission NeurIPS 2021, "Momentum Centering and Asynchronous Update for Adaptive Gradient Meth

Juntang Zhuang 15 Jun 11, 2022
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Parsa Dahesh 6 Dec 14, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
Combinatorially Hard Games where the levels are procedurally generated

puzzlegen Implementation of two procedurally simulated environments with gym interfaces. IceSlider: the agent needs to reach and stop on the pink squa

Autonomous Learning Group 3 Jun 26, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
Bravia core script for python

Bravia-Core-Script You need to have a mandatory account If this L3 does not work, try another L3. enjoy

5 Dec 26, 2021
MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

MVGCN MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks. Developer: Fu Hait

13 Dec 01, 2022
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022