TeST: Temporal-Stable Thresholding for Semi-supervised Learning

Related tags

Deep LearningTeST
Overview

TeST: Temporal-Stable Thresholding for Semi-supervised Learning


TeST Illustration

Semi-supervised learning (SSL) offers an effective method for large-scale data scenes that can utilize large amounts of unlabeled samples. The mainstream SSL approaches use only the criterion of fixed confidence threshold to assess whether the prediction of a sample is of sufficiently high quality to serve as a pseudo-label. However, this simple quality assessment ignores how well the model learns a sample and the uncertainty possessed by that sample itself, failing to fully exploit a large number of correct samples below the confidence threshold. We propose a novel pseudo-label quality assessment method, TeST (Temporal-Stable Thresholding), to design the adaptive thresholds for each instance to recall high-quality samples that are more likely to be correct but discarded by a fixed threshold. We first record the predictions of all instances over a continuous time series. Then we calculate the mean and standard deviation of these predictions to reflect the learning status and temporal uncertainty of the samples, respectively, and use to select pseudo-labels dynamically. In addition, we introduce more diverse samples for TeST to be supervised by high-quality pseudo-labels, thus reducing the uncertainty of overall samples. Our method achieves state-of-the-art performance in various SSL benchmarks, including $5.33%$ and $4.52%$ accuracy improvements on CIFAR-10 with 40 labels and Mini-ImageNet with 4000 labels, respectively. The ablation study further demonstrates that TeST is capable of extending the high-quality pseudo-labels with more temporal-stable and correct pseudo-labels.

Requirements

All experiments are done with python 3.7, torch==1.7.1; torchvision==0.8.2

Prepare environment

  1. Create conda virtual environment and activate it.
conda create -n tst python=3.7 -y
conda activate tst
  1. Install PyTorch and torchvision following the official instructions.
conda install pytorch==1.7.1 torchvision==0.8.2 -c pytorch

Prepare environment

git clone https://github.com/Harry887/TeST.git
cd tst
pip install -r requirements.txt
pip install -v -e .  # or "python setup.py develop"

Training

FixMatch for CIFAR10 with 250 labels

python tst/tools/train_semi.py -d 0-3 -b 64 -f tst/exps/fixmatch/fixmatch_cifar10_exp.py --exp-options out=outputs/exp/cifar10/250/[email protected]_4x16

TeST for Mini-ImageNet with 4000 labels

python tst/tools/train_semi_tst_dual.py -d 0-3 -b 64 -f tst/exps/tst/tst_miniimagenet_dual_exp.py --exp-options out=outputs/exp/miniimagenet/4000/[email protected]_4x16

Development

pre-commit code check

pip install -r requirements-dev.txt
pre-commit install
Owner
Xiong Weiyu
Xiong Weiyu
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
Noether Networks: meta-learning useful conserved quantities

Noether Networks: meta-learning useful conserved quantities This repository contains the code necessary to reproduce experiments from "Noether Network

Dylan Doblar 33 Nov 23, 2022
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob

233 Dec 29, 2022
[CoRL 2021] A robotics benchmark for cross-embodiment imitation.

x-magical x-magical is a benchmark extension of MAGICAL specifically geared towards cross-embodiment imitation. The tasks still provide the Demo/Test

Kevin Zakka 36 Nov 26, 2022
Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity

Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity Indic TTS Samples can be found at https://peter-yh-wu.github.io/cross-

Peter Wu 1 Nov 12, 2022
这是一个unet-pytorch的源码,可以训练自己的模型

Unet:U-Net: Convolutional Networks for Biomedical Image Segmentation目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Downl

Bubbliiiing 567 Jan 05, 2023
Probabilistic Programming and Statistical Inference in PyTorch

PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The

Stefano Peluchetti 109 Nov 26, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "

kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer

ping 543f 1 Dec 05, 2022
Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Neural Material Official code repository for the paper: Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021] Henzler, Deschai

Philipp Henzler 80 Dec 20, 2022
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

9.3k Jan 02, 2023
Lab Materials for MIT 6.S191: Introduction to Deep Learning

This repository contains all of the code and software labs for MIT 6.S191: Introduction to Deep Learning! All lecture slides and videos are available

Alexander Amini 5.6k Dec 26, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Jan 01, 2023
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022