Deep Learning for Computer Vision final project

Overview

Deep Learning for Computer Vision final project

Team: DLCV1

Member & Contribution:

  • 林彥廷 (R06943184): 主程式撰寫、模型訓練 (50%)
  • 王擎天 (R06945055): 副程式撰寫、模型訓練、海報設計 (50%)

Overview:

This project contains code to predict image's type from different domain using moment matching.

Description:

Folders:

  • script: folder contains scripts
  • src: folder contains source code
  • model: folder contains saved models which automatically download from network

Files:

  • script/get_dataset.sh: script which downloads training and testing dataset
  • script/download_from_gdrive.sh: script which downloads googledrive data
  • script/parse_data.sh: script which loads training dataset and converts to torch dataset
  • script/predict.sh: script which predicts images
  • script/evaluate.sh: script which evaluates the model
  • script/predict_for_verify.sh script which generates mini-batch average validation accuracy and loss plot
  • src/models/classifier.py: classifier model
  • src/models/loss.py: loss function
  • src/models/pretrained.py: pretrained model
  • src/models/model.py: Model and function for prediction and evaluation
  • src/parse_data.py: load data in folder and convert them to torch dataset
  • src/predict.py: prediction main function
  • src/evaluate.py: evaluation main function
  • src/train.py: training function
  • src/utils.py: code for parsing and saving
  • src/util/dataset.py: customized dataloader
  • src/util/visual.py: code for visualization
  • src/create_path_csv.py:main function to create image path csv file for image folder

Dataset:

Download training and testing dataset to folder named "dataset_public":

bash ./script/get_dataset.sh

WARNING:

You MUST use src/create_path_csv.py to create image-path csv file for image folder which hasn't contain image-path csv file, the usage will teach you how to use it!!!

Usage:

Create image-path csv file for image folder:

User can use this script to create image-path csv file

python3 src/create_path_csv.py $1
  • $1 is the folder containing the images

Example: (path: /home/final-dlcv1)

python3 src/create_path_csv.py dataset_public/test

The result will look like following text: image_name,label test/018764.jpg,-1 test/034458.jpg,-1 test/050001.jpg,-1 test/027193.jpg,-1 test/002637.jpg,-1 test/017265.jpg,-1 test/048396.jpg,-1 test/013178.jpg,-1 test/036777.jpg,-1 ......

Predict labels of images:

User can use this script to predict labels of images

bash ./script/predict.sh $1 $2 $3 $4 $5
  • $1 is the domain of images (Option: infograph, quickdraw, real, sketch)
  • $2 is the folder containing the images
  • $3 is the csv file contains image paths
  • $4 is the folder to saved the result file
  • $5 is the batch size

Example 1: Predict images from real domain (path: /home/final-dlcv1)

bash script/predict.sh real dataset_public dataset_public/test/image_path.csv predict 256

Example 2: Predict images from sketch domain (path: /home/final-dlcv1)

bash script/predict.sh sketch dataset_public dataset_public/sketch/sketch_test.csv predict 256

Example 3: Predict images from infograph domain (path: /home/final-dlcv1)

bash script/predict.sh infograph dataset_public dataset_public/infograph/infograph_test.csv predict 256

Example 4: Predict images from quickdraw domain (path: /home/final-dlcv1)

bash script/predict.sh quickdraw dataset_public dataset_public/quickdraw/quickdraw_test.csv predict 256

Evaluate the result file:

User can use this script to evaluate the reuslt file with answer file, it will print result on the screen

bash ./script/evaluate.sh $1 $2
  • $1 is the predicted file csv
  • $2 is the answer file csv

Example (path:/home/final-dlcv1)

bash ./script/evaluate.sh predict/real_predict.csv test/test_answer.csv

Reference

Owner
grassking100
A researcher study in bioinformatics and deep learning. To see other repositories: https://bitbucket.org/grassking100/?sort=-updated_on&privacy=public.
grassking100
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Implementations of polygamma, lgamma, and beta functions for PyTorch

lgamma Implementations of polygamma, lgamma, and beta functions for PyTorch. It's very hacky, but that's usually ok for research use. To build, run: .

Rachit Singh 24 Nov 09, 2021
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

IvLabs 112 Dec 02, 2022
Diverse graph algorithms implemented using JGraphT library.

# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing J

See Woo Lee 3 Dec 17, 2022
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022
Code for ICLR2018 paper: Improving GAN Training via Binarized Representation Entropy (BRE) Regularization - Y. Cao · W Ding · Y.C. Lui · R. Huang

code for "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization" (ICLR2018 paper) paper: https://arxiv.org/abs/1805.03644 G

21 Oct 12, 2020
PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

VIN: Value Iteration Networks This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version) Key

Xingdong Zuo 215 Dec 07, 2022
Riemannian Convex Potential Maps

Modeling distributions on Riemannian manifolds is a crucial component in understanding non-Euclidean data that arises, e.g., in physics and geology. The budding approaches in this space are limited b

Facebook Research 61 Nov 28, 2022
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022
Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline

vqvae_dwt_distiller.pytorch Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline. It allows to generate 512x512 ima

Sergei Belousov 25 Jul 19, 2022
Implementation of "Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency"

Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency (ICCV2021) Paper Link: https://arxiv.org/abs/2107.11355 This implementation bui

32 Nov 17, 2022
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022
PyTorch 1.0 inference in C++ on Windows10 platforms

Serving PyTorch Models in C++ on Windows10 platforms How to use Prepare Data examples/data/train/ - 0 - 1 . . . - n examples/data/test/

Henson 88 Oct 15, 2022
DAN: Unfolding the Alternating Optimization for Blind Super Resolution

DAN-Basd-on-Openmmlab DAN: Unfolding the Alternating Optimization for Blind Super Resolution We reproduce DAN via mmediting based on open-sourced code

AlexZou 72 Dec 13, 2022
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Guoji Fu 18 Nov 14, 2022
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might

Matthias Plappert 14 Dec 06, 2022