Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Overview

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Paddle-PANet

目录

结果对比

CTW1500

Method Backbone Fine-tuning Config Precision (%) Recall (%) F-measure (%) Model Log
mmocr_PANet Resnet18 N ctw_config 77.6 83.8 80.6 -- --
PAN (paper) ResNet18 N config 84.6 77.7 81.0 - -
PaddlePaddle_PANet ResNet18 N panet_r18_ctw.py 84.51 78.62 81.46 Model Log

论文介绍

背景简介

这是发在2019ICCV上的一篇一阶段场景文本检测论文。主要是PSENet的升级版。PSENet虽然处理速度很快,准确度很高,但后处理过程繁琐,而且没办法和网络模型融合在一起,实现训练。PANet很好的解决了这一问题,把后处理过程也放入网络中,预测出三个loss,最后进行融合。

网络结构

上图为PAN的整个网络结构,网络主要由Backbone + Segmentation Head(FPEM + FFM) + Output(Text Region、Kernel、Similarity Vector)组成。

本文使用ResNet-18作为PAN的默认Backbone,并提出了低计算量的Segmentation Head(FPFE + FFM)以解决因为使用ResNet-18而导致的特征提取能力较弱,特征感受野较小且表征能力不足的缺点。

此外,为了精准地重建完整的文字实例(text instance),提出了一个可学习的后处理方法——像素聚合法(PA),它能够通过预测出的相似向量来引导文字像素聚合到正确的kernel上去。

下面将详细介绍一下上面的各个部分。

Backbone

Backbone选择的是resnet18, 提取stride为4,8,16,32的conv2,conv3,conv4,conv5的输出作为高低层特征。每层的特征图的通道数都使用1*1卷积降维至128得到轻量级的特征图Fr。

Segmentation Head

PAN使用resNet-18作为网络的默认backbone,虽减少了计算量,但是backbone层数的减少势必会带来模型学习能力的下降。为了提高效率,作者在 resNet-18基础上提出了一个低计算量但可高效增强特征的分割头Segmentation Head。它由两个关键模块组成:特征金字塔增强模块(Feature Pyramid Enhancement Module,FPEM)、特征融合模块(Feature Fusion Module,FFM)。

FPEM

Feature Pyramid Enhancement Module(FPEM),即特征金字塔增强模块。FPEM呈级联结构且计算量小,可以连接在backbone后面让不同尺寸的特征更深、更具表征能力,结构如下:

FPEM是一个U形模组,由两个阶段组成,up-scale增强、down-scale增强。up-scale增强作用于输入的特征金字塔,它以步长32,16,8,4像素在特征图上迭代增强。在down-scale阶段,输入的是由up-scale增强生成的特征金字塔,增强的步长从4到32,同时,down-scale增强输出的的特征金字塔就是最终FPEM的输出。 FPEM模块可以看成是一个轻量级的FPN,只不过这个FPEM计算量不大,可以不停级联以达到不停增强特征的作用。

FFM

Feature Fusion Module(FFM)模块用于融合不同尺度的特征,其结构如下:

最后通过上采样将它们Concatenate到一起。

模型最后预测三种信息: 1、文字区域 2、文字kernel 3、文字kernel的相似向量

Loss

其中文字区域和kernel预测loss为:

快速安装

Recommended environment

Python 3.6+
paddlepaddle-gpu 2.0.2
nccl 2.0+
mmcv 0.2.12
editdistance
Polygon3
pyclipper
opencv-python 3.4.2.17
Cython

Install env

Install paddle following the official tutorial.

pip install -r requirement.txt
./compile.sh

Dataset

Please refer to dataset/README.md for dataset preparation.

Pretrain Backbone

download resent18 pre-train model in pretrain/resnet18.pdparams

pretrain_resnet18 password: j5g3

Training

CUDA_VISIBLE_DEVICES=0,1,2,3 python dist_train.py ${CONFIG_FILE}

For example:

CUDA_VISIBLE_DEVICES=0,1,2,3 python dist_train.py config/pan/pan_r18_ctw.py
#checkpoint continue
python3.7 dist_train.py config/pan/pan_r18_ctw_train.py --nprocs 1 --resume checkpoints/pan_r18_ctw_train

Evaluation

The evaluation scripts of CTW 1500 dataset. CTW

Text detection

./start_test.sh

License

This project is developed and maintained by IMAGINE [email protected] Key Laboratory for Novel Software Technology, Nanjing University.

This project is released under the Apache 2.0 license.

@inproceedings{wang2019efficient,
  title={Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network},
  author={Wang, Wenhai and Xie, Enze and Song, Xiaoge and Zang, Yuhang and Wang, Wenjia and Lu, Tong and Yu, Gang and Shen, Chunhua},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={8440--8449},
  year={2019}
}
Owner
Dreams Are Messages From The Deep🪐
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021

This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c

14 Sep 21, 2022
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
Single-stage Keypoint-based Category-level Object Pose Estimation from an RGB Image

CenterPose Overview This repository is the official implementation of the paper "Single-stage Keypoint-based Category-level Object Pose Estimation fro

NVIDIA Research Projects 188 Dec 27, 2022
GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs

GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs GraphLily is the first FPGA overlay for graph processing. GraphLily supports a rich se

Cornell Zhang Research Group 39 Dec 13, 2022
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.

Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai

SRI Lab, ETH Zurich 25 Sep 14, 2022
This is the repo for Uncertainty Quantification 360 Toolkit.

UQ360 The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncert

International Business Machines 207 Dec 30, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
Dynamica causal Bayesian optimisation

Dynamic Causal Bayesian Optimization This is a Python implementation of Dynamic Causal Bayesian Optimization as presented at NeurIPS 2021. Abstract Th

nd308 18 Nov 22, 2022
Checkout some cool self-projects you can try your hands on to curb your boredom this December!

SoC-Winter Checkout some cool self-projects you can try your hands on to curb your boredom this December! These are short projects that you can do you

Web and Coding Club, IIT Bombay 29 Nov 08, 2022
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

8 Oct 10, 2022
This library provides an abstraction to perform Model Versioning using Weight & Biases.

Description This library provides an abstraction to perform Model Versioning using Weight & Biases. Features Version a new trained model Promote a mod

Hector Lopez Almazan 2 Jan 28, 2022
Caffe models in TensorFlow

Caffe to TensorFlow Convert Caffe models to TensorFlow. Usage Run convert.py to convert an existing Caffe model to TensorFlow. Make sure you're using

Saumitro Dasgupta 2.8k Dec 31, 2022
Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

Faster R-CNN pretrained on VisualGenome This repository modifies maskrcnn-benchmark for object detection and attribute prediction on VisualGenome data

Shizhe Chen 7 Apr 20, 2021
PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

PyTorch implementation of DUL (Data Uncertainty Learning in Face Recognition, CVPR2020)

Mouxiao Huang 20 Nov 15, 2022
A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks A Transformer-based library for SocialNLP classification tasks. Currently

298 Jan 07, 2023
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022