Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Overview

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

This repository is the official PyTorch implementation of Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (arxiv, supp).

🚀 🚀 🚀 News:


Normalizing flows have recently demonstrated promising results for low-level vision tasks. For image super-resolution (SR), it learns to predict diverse photo-realistic high-resolution (HR) images from the low-resolution (LR) image rather than learning a deterministic mapping. For image rescaling, it achieves high accuracy by jointly modelling the downscaling and upscaling processes. While existing approaches employ specialized techniques for these two tasks, we set out to unify them in a single formulation. In this paper, we propose the hierarchical conditional flow (HCFlow) as a unified framework for image SR and image rescaling. More specifically, HCFlow learns a bijective mapping between HR and LR image pairs by modelling the distribution of the LR image and the rest high-frequency component simultaneously. In particular, the high-frequency component is conditional on the LR image in a hierarchical manner. To further enhance the performance, other losses such as perceptual loss and GAN loss are combined with the commonly used negative log-likelihood loss in training. Extensive experiments on general image SR, face image SR and image rescaling have demonstrated that the proposed HCFlow achieves state-of-the-art performance in terms of both quantitative metrics and visual quality.

         

Requirements

  • Python 3.7, PyTorch == 1.7.1
  • Requirements: opencv-python, lpips, natsort, etc.
  • Platforms: Ubuntu 16.04, cuda-11.0
cd HCFlow-master
pip install -r requirements.txt 

Quick Run (takes 1 Minute)

To run the code with one command (without preparing data), run this command:

cd codes
# face image SR
python test_HCFLow.py --opt options/test/test_SR_CelebA_8X_HCFlow.yml

# general image SR
python test_HCFLow.py --opt options/test/test_SR_DF2K_4X_HCFlow.yml

# image rescaling
python test_HCFLow.py --opt options/test/test_Rescaling_DF2K_4X_HCFlow.yml

Data Preparation

The framework of this project is based on MMSR and SRFlow. To prepare data, put training and testing sets in ./datasets as ./datasets/DIV2K/HR/0801.png. Commonly used SR datasets can be downloaded here. There are two ways for accerleration in data loading: First, one can use ./scripts/png2npy.py to generate .npy files and use data/GTLQnpy_dataset.py. Second, one can use .pklv4 dataset (recommended) and use data/LRHR_PKL_dataset.py. Please refer to SRFlow for more details. Prepared datasets can be downloaded here.

Training

To train HCFlow for general image SR/ face image SR/ image rescaling, run this command:

cd codes

# face image SR
python train_HCFLow.py --opt options/train/train_SR_CelebA_8X_HCFlow.yml

# general image SR
python train_HCFLow.py --opt options/train/train_SR_DF2K_4X_HCFlow.yml

# image rescaling
python train_HCFLow.py --opt options/train/train_Rescaling_DF2K_4X_HCFlow.yml

All trained models can be downloaded from here.

Testing

Please follow the Quick Run section. Just modify the dataset path in test_HCFlow_*.yml.

Results

We achieved state-of-the-art performance on general image SR, face image SR and image rescaling.

For more results, please refer to the paper and supp for details.

Citation

@inproceedings{liang21hcflow,
  title={Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling},
  author={Liang, Jingyun and Lugmayr, Andreas and Zhang, Kai and Danelljan, Martin and Van Gool, Luc and Timofte, Radu},
  booktitle={IEEE Conference on International Conference on Computer Vision},
  year={2021}
}

License & Acknowledgement

This project is released under the Apache 2.0 license. The codes are based on MMSR, SRFlow, IRN and Glow-pytorch. Please also follow their licenses. Thanks for their great works.

Comments
  • Testing without GT

    Testing without GT

    Is there a way to run the test without GT? I just want to infer the model. I found a mode called LQ which -I think- should only load the images in LR directory. But this mode gives me the error: assert real_crop * self.opt['scale'] * 2 > self.opt['kernel_size'] TypeError: '>' not supported between instances of 'int' and 'NoneType'

    in LQ_dataset.py", line 88

    solved ✅ 
    opened by AhmedHashish123 4
  • Add Docker environment & web demo

    Add Docker environment & web demo

    Hey @JingyunLiang !👋

    This pull request makes it possible to run your model inside a Docker environment, which makes it easier for other people to run it. We're using an open source tool called Cog to make this process easier.

    This also means we can make a web page where other people can try out your model! View it here: https://replicate.ai/jingyunliang/hcflow-sr, which currently supports Image Super-Resolution.

    Claim your page here so you can edit it, and we'll feature it on our website and tweet about it too.

    In case you're wondering who I am, I'm from Replicate, where we're trying to make machine learning reproducible. We got frustrated that we couldn't run all the really interesting ML work being done. So, we're going round implementing models we like. 😊

    opened by chenxwh 2
  • The code implementation and the paper description seem different

    The code implementation and the paper description seem different

    Hi, your work is excellent, but there is one thing I don't understand.

    What is written in the paper is:

    "A diagonal covariance matrix with all diagonal elements close to zero"

    But the code implementation in HCFlowNet_SR_arch.py line 64 is: basic. Gaussian diag.logp (LR, - torch. Ones_ like(lr)*6, fake_ lr_ from_ hr)

    why use - torch. Ones_ like(lr)*6 as covariance matrix? This seems to be inconsistent with the description in the paper

    opened by xmyhhh 2
  • environment

    environment

    ImportError: /home/hbw/gcc-build-5.4.0/lib64/libstdc++.so.6: version `GLIBCXX_3.4.22' not found (required by /home/hbw/anaconda3/lib/python3.8/site-packages/scipy/fft/_pocketfft/pypocketfft.cpython-38-x86_64-linux-gnu.so)

    Is this error due to my GCC version being too low, and your version is? looking forward to your reply!

    opened by hbw945 2
  • Code versions of BRISQUE and NIQE used in paper

    Code versions of BRISQUE and NIQE used in paper

    Hi, I have run performance tests with the Matlab versions of the NIQE and BRISQUE codes and found deviations from the values reported in the paper. Could you please provide a link to the code you used? thanks a lot~

    solved ✅ 
    opened by xmyhhh 1
  • Update on Replicate demo

    Update on Replicate demo

    Hello again @JingyunLiang :),

    This pull request does a few little things:

    • Updated the demo link with an icon in README as you suggested
    • A bugfix for cleaning temporary directory on cog

    We have added more functionality to the Example page of your model, now you can add and delete to customise the example gallery as you like (as the owner of the page)

    Also, you could run cog push if you like to update the model of any other models on replicate in the future 😄

    opened by chenxwh 1
  • About training and inference time?

    About training and inference time?

    Thanks for your nice work!

    I want to know how much time do you need to train and inference with your models.

    Furthermore, will information about params / FLOPs be reported?

    Thanks.

    solved ✅ 
    opened by TiankaiHang 1
  • RuntimeError: The size of tensor a (20) must match the size of tensor b (40) at non-singleton dimension 3

    RuntimeError: The size of tensor a (20) must match the size of tensor b (40) at non-singleton dimension 3

    Hi, I've encountered the error when I trained the HCFlowNet. I changed my ".png" dataset to ".pklv4" dataset. I was trained on the platform of windows 10 with 1 single GPU. Could you please help me find the error? Thanks a lot.

    opened by William9Baker 0
  • How to build an invertible mapping between two variables whose dimensions are different ?

    How to build an invertible mapping between two variables whose dimensions are different ?

    Maybe this is a stupid question, but I have been puzzled for quite a long time. In the image super-resolution task, the input and output have different dimensions. How to build an invertible mapping between them? I notice that you calculate the determinant of the Jacobian, so I thought the mapping here is strictly invertible?

    opened by Wangbk-dl 0
  • How to make an invertible mapping between two variables whose dimensions are different ?

    How to make an invertible mapping between two variables whose dimensions are different ?

    Maybe this is a stupid question, but I have been puzzled for quite a long time. In the image super-resolution task, the input and output have different dimensions. How to build such an invertible mapping between them ? Take an example: If I have a low-resolution(LR) image x, and I have had an invertible function G. I can feed LR image x into G, and generate an HR image y. But can you ensure that we could obtain an output the same as x when we feed y into G_inverse?

    y = G(x) x' = G_inverse(y) =? x

    I would appreciate it if you could offer some help.

    opened by Wangbk-dl 0
  • New Super-Resolution Benchmarks

    New Super-Resolution Benchmarks

    Hello,

    MSU Graphics & Media Lab Video Group has recently launched two new Super-Resolution Benchmarks.

    If you are interested in participating, you can add your algorithm following the submission steps:

    We would be grateful for your feedback on our work!

    opened by EvgeneyBogatyrev 0
  • Why NLL is negative during the training?

    Why NLL is negative during the training?

    Great work! During the training process, we found that the output NLL is negative. But theoretically, NLL should be positive. Is there any explanation for this?

    opened by IMSEMZPZ 0
Owner
Jingyun Liang
PhD Student at Computer Vision Lab, ETH Zurich
Jingyun Liang
Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation (ICCV2021)

Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic Segmentation This is a pytorch project for the paper Dynamic Divide-and-Conquer Ad

DV Lab 29 Nov 21, 2022
Group-Free 3D Object Detection via Transformers

Group-Free 3D Object Detection via Transformers By Ze Liu, Zheng Zhang, Yue Cao, Han Hu, Xin Tong. This repo is the official implementation of "Group-

Ze Liu 213 Dec 07, 2022
Two-stage CenterNet

Probabilistic two-stage detection Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network. Probabilistic two-st

Xingyi Zhou 1.1k Jan 03, 2023
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022
Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation

Translation-equivariant Image Quantizer for Bi-directional Image-Text Generation Woncheol Shin1, Gyubok Lee1, Jiyoung Lee1, Joonseok Lee2,3, Edward Ch

Woncheol Shin 7 Sep 26, 2022
Convert weight file.pth to weight file.blob

CONVERT YOUR MODEL TO IR FORMAT INSTALLATION OpenVino Toolkit Download openvinotoolkit 2021.3 version : Link Instruction of installation : Link Pytorc

Tran Anh Tuan 3 Nov 18, 2021
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022
Keras implementation of Deeplab v3+ with pretrained weights

Keras implementation of Deeplabv3+ This repo is not longer maintained. I won't respond to issues but will merge PR DeepLab is a state-of-art deep lear

1.3k Dec 07, 2022
Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer"

StyleAttack Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer" Prepare Pois

THUNLP 19 Nov 20, 2022
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention"

PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention" to appear in ICCV 2021

Kamal Gupta 75 Dec 23, 2022
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
NEO: Non Equilibrium Sampling on the orbit of a deterministic transform

NEO: Non Equilibrium Sampling on the orbit of a deterministic transform Description of the code This repo describes the NEO estimator described in the

0 Dec 01, 2021
TDN: Temporal Difference Networks for Efficient Action Recognition

TDN: Temporal Difference Networks for Efficient Action Recognition Overview We release the PyTorch code of the TDN(Temporal Difference Networks).

Multimedia Computing Group, Nanjing University 326 Dec 13, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
Example for AUAV 2022 with obstacle avoidance.

AUAV 2022 Sample This is a sample PX4 based quadrotor path planning framework based on Ubuntu 20.04 and ROS noetic for the IEEE Autonomous UAS 2022 co

James Goppert 11 Sep 16, 2022