Python package for visualizing the loss landscape of parameterized quantum algorithms.

Related tags

Deep Learningorqviz
Overview

Image

orqviz

A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc.

orqviz provides a collection of tools which quantum researchers and enthusiasts alike can use for their simulations. It works with any framework for running quantum circuits, for example qiskit, cirq, pennylane, and Orquestra. The package contains functions to generate data, as well as a range of flexible plotting and helper functions. orqviz is light-weight and has very few dependencies.

Getting started

In doc/examples/ we provide a range of Jupyter notebook examples for orqviz. We have four Jupyter notebooks with tutorials for how to get started with any quantum circuit simulation framework you might use. You will find examples with qiskit, cirq, pennylane and Zapata's Orquestra library. The tutorials are not exhaustive, but they do provide a full story that you can follow along.

In this notebook we have the Sombrero example that we showcase in our paper. We also have an advanced example notebook which provides a thorough demonstration of the flexibility of the orqviz package.

We recently published a paper on arXiv where we review the tools available with orqviz:
ORQVIZ: Visualizing High-Dimensional Landscapes in Variational Quantum Algorithms

Installation

You can install our package using the following command:

pip install orqviz

Alternatively you can build the package from source. This is especially helpful if you would like to contribute to orqviz

git clone https://github.com/zapatacomputing/orqviz.git
cd orqviz
pip install -e ./

Examples

import orqviz
import numpy as np

np.random.seed(42)

def loss_function(pars):
    return np.sum(np.cos(pars))**2 + np.sum(np.sin(30*pars))**2

n_params = 42
params = np.random.uniform(-np.pi, np.pi, size=n_params)
dir1 = orqviz.geometric.get_random_normal_vector(n_params)
dir2 = orqviz.geometric.get_random_orthonormal_vector(dir1)

scan2D_result = orqviz.scans.perform_2D_scan(params, loss_function,
                                direction_x=dir1, direction_y=dir2,
                                n_steps_x=100)
orqviz.scans.plot_2D_scan_result(scan2D_result)

This code results in the following plot:

Image

Authors

The leading developer of this package is Manuel Rudolph at Zapata Computing.
For questions related to the visualization techniques, contact Manuel via [email protected] .

The leading software developer of this package is Michał Stęchły at Zapata Computing.
For questions related to technicalities of the package, contact Michał via [email protected] .

Thank you to Sukin Sim and Luis Serrano from Zapata Computing for their contributions to the tutorials.

You can also contact us or ask general questions using GitHub Discussions.

For more specific code issues, bug fixes, etc. please open a GitHub issue in the orqviz repository.

If you are doing research using orqviz, please cite our paper:

ORQVIZ: Visualizing High-Dimensional Landscapes in Variational Quantum Algorithms

How to contribute

Please see our Contribution Guidelines.

Comments
  • Use transpile to build circuit only once

    Use transpile to build circuit only once

    Despite being wrapped up in a lambda function, the get_circuit function is actually still called for every function evaluation during plot generation or optimization, and hence the circuit is rebuilt each time. This rather defeats the concept of late binding of the parameter values. The PR uses a slightly different approach using the transpile function. The code is arguably more transparent than using the lambda function wrapper. Evaluation is faster now, but for this simple case rarely more than 10%. One downside, the circuit cannot be plotted anymore in a simple way.

    opened by RonMeiburg 11
  • ci: add step with Pythonic cruft cleanup

    ci: add step with Pythonic cruft cleanup

    Apparently, issues that we had with mypy stem from Github Actions caching some (?) directories (thanks @alexjuda for pointing this out!). This PR adds a cleaning step (taken from z-quantum-actions) that deletes potentially conflicting directories.

    opened by dexter2206 1
  • Clean notebooks

    Clean notebooks

    These are the once-run versions of the cirq and qiskit notebooks derived from the 'simplified qiskit get_circuit() return' commit from the main branch. I hope this works for you. If not, then I apologize, When it comes to git I still suffer from sas every now and then.

    opened by RonMeiburg 1
  • Loss function clarity

    Loss function clarity

    Goals of this draft PR:

    • Allow parameters to be any np.ndarray rather than strictly a 1D np.ndarray
    • Improve docstrings for what we define as a loss function
    • Improve README to specify what we define as a loss function, and how to wrap their loss function with functools.partial
    • Alternatively, allow loss_function_kwargs in the scanning functions that we pass to the loss_function with more than one argument.
    opened by MSRudolph 1
  • Utilize tqdm progress bar when verbose=True during scans.

    Utilize tqdm progress bar when verbose=True during scans.

    Is your feature request related to a problem? Please describe. We should replace the print calls when verbose=True in scans with tqdm from the tqdm library. Alternatively, we make it the default and find a way to mute the library's prints.

    Describe the solution you'd like

    verbose = True  # or False
    for it in tqdm(range(n_iters), disable = not verbose):
       ...  # run scans
    

    Additional context Our verbosity options are currently very rudimentary and tqdm is one of the most used Python libraries.

    opened by MSRudolph 2
  • This repo should contain Issues for how people can contribute

    This repo should contain Issues for how people can contribute

    Is your feature request related to a problem? Please describe. Currently, when people enter the orqviz GitHub repository with the intent to contribute, there are no open Issues and not many PRs. They will not know what might be low-hanging fruit to contribute.

    Describe the solution you'd like We (orqviz developers) should open Issues which are connected to how people can concretely contribute. For example, we could provide links to existing tutorials which we believe can be readily enhanced with our visualization techniques. In such cases, potential contributors could work on such enhancements and reach out to the authors of the original tutorials. Similarly, we can elaborate on future visualization techniques which we could experiment with. This may be done by external contributors.

    opened by MSRudolph 0
Releases(v0.3.0)
  • v0.3.0(Aug 19, 2022)

    What's Changed

    • ci: add step with Pythonic cruft cleanup by @dexter2206 in https://github.com/zapatacomputing/orqviz/pull/43
    • Update main by @mstechly in https://github.com/zapatacomputing/orqviz/pull/44
    • Fourier transform by @laurgao in https://github.com/zapatacomputing/orqviz/pull/45

    Full Changelog: https://github.com/zapatacomputing/orqviz/compare/v0.2.0...v0.3.0

    Source code(tar.gz)
    Source code(zip)
    orqviz-0.3.0-py3-none-any.whl(38.09 KB)
  • v0.2.0(Feb 8, 2022)

    New features:

    • orqviz now doesn't require parameters to be 1D vectors, they can be ND arrays instead
    • We introduced LossFunctionWrapper as a utility tool that helps with changing arbitrary python functions into orqviz-compatible loss functions.

    Minor changes:

    • Improvements in notebook examples
    • Improvements in readme and contribution guidelines
    Source code(tar.gz)
    Source code(zip)
  • v0.1.1(Nov 9, 2021)

    What's Changed

    • Fixed classifiers in the setup.cfg
    • Minor fixes in in README
    • Relax dependency versions

    Full Changelog: https://github.com/zapatacomputing/orqviz/compare/v0.1.0...v0.1.1

    Source code(tar.gz)
    Source code(zip)
Owner
Zapata Computing, Inc.
Zapata Computing, Inc.
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Yaoming Cai 5 Jul 18, 2022
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Ramin Nakhli 71 Dec 04, 2022
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
Accelerated Multi-Modal MR Imaging with Transformers

Accelerated Multi-Modal MR Imaging with Transformers Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 torch==1.7.0 runstats==1.8.0 p

54 Dec 16, 2022
Text Extraction Formulation + Feedback Loop for state-of-the-art WSD (EMNLP 2021)

ConSeC is a novel approach to Word Sense Disambiguation (WSD), accepted at EMNLP 2021. It frames WSD as a text extraction task and features a feedback loop strategy that allows the disambiguation of

Sapienza NLP group 36 Dec 13, 2022
Addon and nodes for working with structural biology and molecular data in Blender.

Molecular Nodes 🧬 🔬 💻 Buy Me a Coffee to Keep Development Going! Join a Community of Blender SciVis People! What is Molecular Nodes? Molecular Node

Brady Johnston 456 Jan 08, 2023
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
Campsite Reservation Finder

yellowstone-camping UPDATE: yellowstone-camping is being expanded and renamed to camply. The updated tool now interfaces with the Recreation.gov API a

Justin Flannery 233 Jan 08, 2023
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 98 Dec 21, 2022
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
🌊 Online machine learning in Python

In a nutshell River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition

OnlineML 4k Jan 02, 2023
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Jiawei Ren 45 Dec 28, 2022
Hypernetwork-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels

Hypernet-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels The implementation of Hypernet-Ensemble Le

Sungmin Hong 6 Jul 18, 2022
Hyperparameters tuning and features selection are two common steps in every machine learning pipeline.

shap-hypetune A python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models. Overview Hyperparameters t

Marco Cerliani 422 Jan 08, 2023
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022