ConvBERT-Prod

Overview

ConvBERT

目录

0. 仓库结构

root:[./]
|--convbert_base_outputs
|      |--args.json
|      |--best.pdparams
|      |      |--model_config.json
|      |      |--model_state.pdparams
|      |      |--tokenizer_config.json
|      |      |--vocab.txt
|--convbert_infer
|      |--inference.pdiparams
|      |--inference.pdiparams.info
|      |--inference.pdmodel
|      |--tokenizer_config.json
|      |--vocab.txt
|--deploy
|      |--inference_python
|      |      |--infer.py
|      |      |--README.md
|      |--serving_python
|      |      |--config.yml
|      |      |--convbert_client
|      |      |      |--serving_client_conf.prototxt
|      |      |      |--serving_client_conf.stream.prototxt
|      |      |--convbert_server
|      |      |      |--inference.pdiparams
|      |      |      |--inference.pdmodel
|      |      |      |--serving_server_conf.prototxt
|      |      |      |--serving_server_conf.stream.prototxt
|      |      |--PipelineServingLogs
|      |      |      |--pipeline.log
|      |      |      |--pipeline.log.wf
|      |      |      |--pipeline.tracer
|      |      |--pipeline_http_client.py
|      |      |--ProcessInfo.json
|      |      |--README.md
|      |      |--web_service.py
|--images
|      |--convbert_framework.jpg
|      |--py_serving_client_results.jpg
|      |--py_serving_startup_visualization.jpg
|--LICENSE
|--output_inference_engine.npy
|--output_predict_engine.npy
|--paddlenlp
|--print_project_tree.py
|--README.md
|--requirements.txt
|--shell
|      |--export.sh
|      |--inference_python.sh
|      |--predict.sh
|      |--train.sh
|      |--train_dist.sh
|--test_tipc
|      |--common_func.sh
|      |--configs
|      |      |--ConvBERT
|      |      |      |--model_linux_gpu_normal_normal_serving_python_linux_gpu_cpu.txt
|      |      |      |--train_infer_python.txt
|      |--docs
|      |      |--test_serving.md
|      |      |--test_train_inference_python.md
|      |      |--tipc_guide.png
|      |      |--tipc_serving.png
|      |      |--tipc_train_inference.png
|      |--output
|      |      |--python_infer_cpu_usemkldnn_False_threads_null_precision_null_batchsize_null.log
|      |      |--python_infer_gpu_usetrt_null_precision_null_batchsize_null.log
|      |      |--results_python.log
|      |      |--results_serving.log
|      |      |--server_infer_gpu_pipeline_http_usetrt_null_precision_null_batchsize_1.log
|      |--README.md
|      |--test_serving.sh
|      |--test_train_inference_python.sh
|--tools
|      |--export_model.py
|      |--predict.py
|--train.log
|--train.py

1. 简介

论文: ConvBERT: Improving BERT with Span-based Dynamic Convolution

摘要: 像BERT及其变体这样的预训练语言模型最近在各种自然语言理解任务中取得了令人印象深刻的表现。然而,BERT严重依赖全局自注意力块,因此需要大量内存占用和计算成本。 虽然它的所有注意力头从全局角度查询整个输入序列以生成注意力图,但我们观察到一些头只需要学习局部依赖,这意味着存在计算冗余。 因此,我们提出了一种新颖的基于跨度的动态卷积来代替这些自注意力头,以直接对局部依赖性进行建模。新的卷积头与其余的自注意力头一起形成了一个新的混合注意力块,在全局和局部上下文学习中都更有效。 我们为 BERT 配备了这种混合注意力设计并构建了一个ConvBERT模型。实验表明,ConvBERT 在各种下游任务中明显优于BERT及其变体,具有更低的训练成本和更少的模型参数。 值得注意的是,ConvBERT-base 模型达到86.4GLUE分数,比ELECTRA-base高0.7,同时使用不到1/4的训练成本。

2. 数据集和复现精度

数据集为SST-2

模型 sst-2 dev acc (复现精度)
ConvBERT 0.9461

3. 准备环境与数据

3.1 准备环境

  • 下载代码
git clone https://github.com/junnyu/ConvBERT-Prod.git
  • 安装paddlepaddle
# 需要安装2.2及以上版本的Paddle,如果
# 安装GPU版本的Paddle
pip install paddlepaddle-gpu==2.2.0
# 安装CPU版本的Paddle
pip install paddlepaddle==2.2.0

更多安装方法可以参考:Paddle安装指南

  • 安装requirements
pip install -r requirements.txt

3.2 准备数据

SST-2数据已经集成在paddlenlp仓库中。

3.3 准备模型

如果您希望直接体验评估或者预测推理过程,可以直接根据第2章的内容下载提供的预训练模型,直接体验模型评估、预测、推理部署等内容。

4. 开始使用

4.1 模型训练

  • 单机单卡训练
export CUDA_VISIBLE_DEVICES=0
python -m paddle.distributed.launch --gpus "0" train.py \
    --model_type convbert \
    --model_name_or_path convbert-base \
    --task_name sst-2 \
    --max_seq_length 128 \
    --learning_rate 1e-4 \
    --num_train_epochs 3 \
    --output_dir ./convbert_base_outputs/ \
    --logging_steps 100 \
    --save_steps 400 \
    --batch_size 32   \
    --warmup_proportion 0.1

部分训练日志如下所示。

====================================================================================================
global step 2500/6315, epoch: 1, batch: 394, rank_id: 0, loss: 0.140546, lr: 0.0000671182, speed: 3.7691 step/s
global step 2600/6315, epoch: 1, batch: 494, rank_id: 0, loss: 0.062813, lr: 0.0000653589, speed: 4.1413 step/s
global step 2700/6315, epoch: 1, batch: 594, rank_id: 0, loss: 0.051268, lr: 0.0000635996, speed: 4.1867 step/s
global step 2800/6315, epoch: 1, batch: 694, rank_id: 0, loss: 0.133289, lr: 0.0000618403, speed: 4.1769 step/s
eval loss: 0.342346, acc: 0.9461009174311926,
eval done total : 1.9056718349456787 s
====================================================================================================
  • 单机多卡训练
export CUDA_VISIBLE_DEVICES=0,1,2,3
python -m paddle.distributed.launch --gpus "0,1,2,3" train.py \
    --model_type convbert \
    --model_name_or_path convbert-base \
    --task_name sst-2 \
    --max_seq_length 128 \
    --learning_rate 1e-4 \
    --num_train_epochs 3 \
    --output_dir ./convbert_base_outputs/ \
    --logging_steps 100 \
    --save_steps 400 \
    --batch_size 32   \
    --warmup_proportion 0.1

更多配置参数可以参考train.pyget_args_parser函数。

4.2 模型评估

该项目中,训练与评估脚本同时进行,请查看训练过程中的评价指标。

4.3 模型预测

  • 使用GPU预测
python tools/predict.py --model_path=./convbert_base_outputs/best.pdparams

对于下面的文本进行预测

the problem , it is with most of these things , is the script .

最终输出结果为label_id: 0, prob: 0.9959235191345215,表示预测的标签ID是0,置信度为0.9959

  • 使用CPU预测
python tools/predict.py --model_path=./convbert_base_outputs/best.pdparams --device=cpu

对于下面的文本进行预测

the problem , it is with most of these things , is the script .

最终输出结果为label_id: 0, prob: 0.995919406414032,表示预测的标签ID是0,置信度为0.9959

5. 模型推理部署

5.1 基于Inference的推理

Inference推理教程可参考:链接

5.2 基于Serving的服务化部署

Serving部署教程可参考:链接

6. TIPC自动化测试脚本

以Linux基础训练推理测试为例,测试流程如下。

  • 运行测试命令
bash test_tipc/test_train_inference_python.sh test_tipc/configs/ConvBERT/train_infer_python.txt whole_train_whole_infer

如果运行成功,在终端中会显示下面的内容,具体的日志也会输出到test_tipc/output/文件夹中的文件中。

�[33m Run successfully with command - python train.py --save_steps 400      --max_steps=6315           !  �[0m
�[33m Run successfully with command - python tools/export_model.py --model_path=./convbert_base_outputs/best.pdparams --save_inference_dir ./convbert_infer      !  �[0m
�[33m Run successfully with command - python deploy/inference_python/infer.py --model_dir ./convbert_infer --use_gpu=True               > ./test_tipc/output/python_infer_gpu_usetrt_null_precision_null_batchsize_null.log 2>&1 !  �[0m
�[33m Run successfully with command - python deploy/inference_python/infer.py --model_dir ./convbert_infer --use_gpu=False --benchmark=False               > ./test_tipc/output/python_infer_cpu_usemkldnn_False_threads_null_precision_null_batchsize_null.log 2>&1 !  �[0m

7. 注意

为了可以使用静态图导出功能,本项目修改了paddlenlp仓库中的convbert模型,主要修改部分如下。

    1. 使用paddle.shape而不是tensor.shape获取tensor的形状。
    1. F.unfold对于静态图不怎么友好,只好采用for循环。
if self.conv_type == "sdconv":
    bs = paddle.shape(q)[0]
    seqlen = paddle.shape(q)[1]
    mixed_key_conv_attn_layer = self.key_conv_attn_layer(query)
    conv_attn_layer = mixed_key_conv_attn_layer * q

    # conv_kernel_layer
    conv_kernel_layer = self.conv_kernel_layer(conv_attn_layer)
    conv_kernel_layer = tensor.reshape(
        conv_kernel_layer, shape=[-1, self.conv_kernel_size, 1])
    conv_kernel_layer = F.softmax(conv_kernel_layer, axis=1)
    conv_out_layer = self.conv_out_layer(query)
    conv_out_layer = paddle.stack(
        [
            paddle.slice(F.pad(conv_out_layer, pad=[
                            self.padding, self.padding], data_format="NLC"), [1], starts=[i], ends=[i+seqlen])
            for i in range(self.conv_kernel_size)
        ],
        axis=-1,
    )
    conv_out_layer = tensor.reshape(
        conv_out_layer,
        shape=[-1, self.head_dim, self.conv_kernel_size])
    conv_out_layer = tensor.matmul(conv_out_layer, conv_kernel_layer)
    conv_out = tensor.reshape(
        conv_out_layer,
        shape=[bs, seqlen, self.num_heads, self.head_dim])

8. LICENSE

本项目的发布受Apache 2.0 license许可认证。

9. 参考链接与文献

TODO

Owner
yujun
Please show me your code.
yujun
中文医疗信息处理基准CBLUE: A Chinese Biomedical LanguageUnderstanding Evaluation Benchmark

English | 中文说明 CBLUE AI (Artificial Intelligence) is playing an indispensabe role in the biomedical field, helping improve medical technology. For fur

452 Dec 30, 2022
🐍 A hyper-fast Python module for reading/writing JSON data using Rust's serde-json.

A hyper-fast, safe Python module to read and write JSON data. Works as a drop-in replacement for Python's built-in json module. This is alpha software

Matthias 479 Jan 01, 2023
Train and use generative text models in a few lines of code.

blather Train and use generative text models in a few lines of code. To see blather in action check out the colab notebook! Installation Use the packa

Dan Carroll 16 Nov 07, 2022
🤖 Basic Financial Chatbot with handoff ability built with Rasa

Financial Services Example Bot This is an example chatbot demonstrating how to build AI assistants for financial services and banking with Rasa. It in

Mohammad Javad Hossieni 4 Aug 10, 2022
Revisiting Pre-trained Models for Chinese Natural Language Processing (Findings of EMNLP 2020)

This repository contains the resources in our paper "Revisiting Pre-trained Models for Chinese Natural Language Processing", which will be published i

Yiming Cui 463 Dec 30, 2022
Textpipe: clean and extract metadata from text

textpipe: clean and extract metadata from text textpipe is a Python package for converting raw text in to clean, readable text and extracting metadata

Textpipe 298 Nov 21, 2022
BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable topics whilst keeping important words in the topic descriptions

BERTopic BERTopic is a topic modeling technique that leverages 🤗 transformers and c-TF-IDF to create dense clusters allowing for easily interpretable

Maarten Grootendorst 3.6k Jan 07, 2023
GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates

GraphNLI: A Graph-based Natural Language Inference Model for Polarity Prediction in Online Debates Vibhor Agarwal, Sagar Joglekar, Anthony P. Young an

Vibhor Agarwal 2 Jun 30, 2022
Translates basic English sentences into the Huna language (hoo-NAH)

huna-translator The Huna Language Translates basic English sentences into the Huna language (hoo-NAH). The Huna constructed language was developed in

Miles Smith 0 Jan 20, 2022
Host your own GPT-3 Discord bot

GPT3 Discord Bot Host your own GPT-3 Discord bot i'd host and make the bot invitable myself, however GPT3 terms of service prohibit public use of GPT3

[something hillarious here] 8 Jan 07, 2023
An ActivityWatch watcher to pose questions to the user and record her answers.

aw-watcher-ask An ActivityWatch watcher to pose questions to the user and record her answers. This watcher uses Zenity to present dialog boxes to the

Bernardo Chrispim Baron 33 Dec 03, 2022
Associated Repository for "Translation between Molecules and Natural Language"

MolT5: Translation between Molecules and Natural Language Associated repository for "Translation between Molecules and Natural Language". Table of Con

67 Dec 15, 2022
Various capabilities for static malware analysis.

Malchive The malchive serves as a compendium for a variety of capabilities mainly pertaining to malware analysis, such as scripts supporting day to da

MITRE Cybersecurity 64 Nov 22, 2022
Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts

gpt-2-simple A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifical

Max Woolf 3.1k Jan 07, 2023
Simple Annotated implementation of GPT-NeoX in PyTorch

Simple Annotated implementation of GPT-NeoX in PyTorch This is a simpler implementation of GPT-NeoX in PyTorch. We have taken out several optimization

labml.ai 101 Dec 03, 2022
Weird Sort-and-Compress Thing

Weird Sort-and-Compress Thing A weird integer sorting + compression algorithm inspired by a conversation with Luthingx (it probably already exists by

Douglas 1 Jan 03, 2022
HAN2HAN : Hangul Font Generation

HAN2HAN : Hangul Font Generation

Changwoo Lee 36 Dec 28, 2022
Converts text into a PDF of handwritten notes

Text To Handwritten Notes Converts text into a PDF of handwritten notes Explore the docs » · Report Bug · Request Feature · Steps: $ git clone https:/

UVSinghK 63 Oct 09, 2022
This library is testing the ethics of language models by using natural adversarial texts.

prompt2slip This library is testing the ethics of language models by using natural adversarial texts. This tool allows for short and simple code and v

9 Dec 28, 2021
This repository contains the code for "Generating Datasets with Pretrained Language Models".

Datasets from Instructions (DINO 🦕 ) This repository contains the code for Generating Datasets with Pretrained Language Models. The paper introduces

Timo Schick 154 Jan 01, 2023