Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

Overview

Python 3.6

On Adversarial Robustness: A Neural Architecture Search perspective

Preparation:

Clone the repository:

https://github.com/tdchaitanya/nas-robustness.git

prerequisites

  • Python 3.6
  • Pytorch 1.2.0
  • CUDA 10.1

For a hassle-free environment setup, use the environment.yml file included in the repository.

Pre-trained models:

For easy reproduction of the result shown in the paper, this repository is organized dataset-wise, and all the pre-trained models can be downloaded from here

CIFAR-10/100

All the commands in this section should be executed in the cifar directory.

Hand-crafted models on CIFAR-10

All the files corresponding to this dataset are included in cifar-10/100 directories. Download cifar weigths from the shared drive link and place them in nas-robustness/cifar-10/cifar10_models/state_dicts directory.

For running all the four attacks on Resnet-50 (shown in Table 1) run the following command.

python handcrafted.py --arch resnet50

Change the architecture parameter to run attacks on other models. Only resnet-18, resnet-50, densenet-121, densenet-169, vgg-16 are supported for now. For other models, you may have to train them from scratch before running these attacks.

Hand-crafted models on CIFAR-100

For training the models on CIFAR-100 we have used fastai library. Download cifar-100 weigths from the shared drive link and place them in nas-robustness/cifar/c100-weights directory.

Additionally, you'll also have to download the CIFAR-100 dataset from here and place it in the data directory (we'll not be using this anywhere, this is just needed to initialize the fastai model).

python handcrafted_c100.py --arch resnet50
DARTS

Download DARTS CIFAR-10/100 weights from the drive and place it nas-robustness/darts/pretrained

For running all the four attacks on DARTS run the following command:

python darts-nas.py

Add --cifar100 to run the experiments on cifar-100

P-DARTS

Download P-DARTS CIFAR-10/100 weights from the drive and place it nas-robustness/pdarts/pretrained

For running all the four attacks on P-DARTS run the following command:

python pdarts-nas.py

Add --cifar100 to run the experiments on CIFAR-100

NSGA-Net

Download NSGA-Net CIFAR-10/100 weights from the drive and place it nas-robustness/nsga_net/pretrained

For running all the four attacks on P-DARTS run the following command:

python nsganet-nas.py

Add --cifar100 to run the experiments on CIFAR-100

PC-DARTS

Download PC-DARTS CIFAR-10/100 weights from the drive and place it nas-robustness/pcdarts/pretrained

For running all the four attacks on PC-DARTS run the following command:

python pcdarts-nas.py

Add --cifar100 to run the experiments on CIFAR-100

ImageNet

All the commands in this section should be executed in ImageNet directory.

Hand-crafted models

All the files corresponding to this dataset are included in imagenet directory. We use the default pre-trained weights provided by PyTorch for all attacks.

For running all the four attacks on Resnet-50 run the following command:

python handcrafted.py --arch resnet50

For DARTS, P-DARTS, PC-DARTS follow the same instructions as mentioned above for CIFAR-10/100, just change the working directory to ImageNet

DenseNAS

Download DenseNAS ImageNet weights from the drive (these are same as the weights provided in thier official repo) and place it nas-robustness/densenas/pretrained

For running all the four attacks on DenseNAS-R3 run the following command:

python dense-nas.py --model DenseNAS-R3

Citation

@InProceedings{Devaguptapu_2021_ICCV,
    author    = {Devaguptapu, Chaitanya and Agarwal, Devansh and Mittal, Gaurav and Gopalani, Pulkit and Balasubramanian, Vineeth N},
    title     = {On Adversarial Robustness: A Neural Architecture Search Perspective},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops},
    month     = {October},
    year      = {2021},
    pages     = {152-161}
}

Acknowledgements

Some of the code and weights provided in this library are borrowed from the libraries mentioned below:

Owner
Chaitanya Devaguptapu
Masters by Research (M.Tech-RA), IIT Hyderabad
Chaitanya Devaguptapu
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte

mandos 43 Dec 07, 2022
Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ryuichiro Hataya 50 Dec 05, 2022
git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

Yue Cao 51 Nov 22, 2022
Deep motion transfer

animation-with-keypoint-mask Paper The right most square is the final result. Softmax mask (circles): \ Heatmap mask: \ conda env create -f environmen

9 Nov 01, 2022
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
Code repository for the paper Computer Vision User Entity Behavior Analytics

Computer Vision User Entity Behavior Analytics Code repository for "Computer Vision User Entity Behavior Analytics" Code Description dataset.csv As di

Sameer Khanna 2 Aug 20, 2022
Perfect implement. Model shared. x0.5 (Top1:60.646) and 1.0x (Top1:69.402).

Shufflenet-v2-Pytorch Introduction This is a Pytorch implementation of faceplusplus's ShuffleNet-v2. For details, please read the following papers:

423 Dec 07, 2022
PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

A new codebase for popular Scene Graph Generation methods (2020). Visualization & Scene Graph Extraction on custom images/datasets are provided. It's also a PyTorch implementation of paper “Unbiased

Kaihua Tang 824 Jan 03, 2023
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022
Neural network for stock price prediction

neural_network_for_stock_price_prediction Neural networks for stock price predic

2 Feb 04, 2022
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

4 Mar 11, 2022
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
🧠 A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation.', ECCV 2016

Deep CORAL A PyTorch implementation of 'Deep CORAL: Correlation Alignment for Deep Domain Adaptation. B Sun, K Saenko, ECCV 2016' Deep CORAL can learn

Andy Hsu 200 Dec 25, 2022