Meli Data Challenge 2021 - First Place Solution

Overview

Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021, first place in both public and private leaderboards.

The Model

My final model is an ensemble combining recurrent neural networks and XGBoost regressors. Neural networks are trained to predict the stock days probability distribution using the RPS as loss function. XGBoost regressors are trained to predict stock days using different objectives, here the intuition behind this:

  • MSE loss: the regressor trained with this loss will output values close to the expected mean.
  • Pseudo-Huber loss: an alternative for the MAE loss, this regressor outputs values close to the expected median.
  • Quantile loss: 11 regressors are trained using a quantile loss with alpha 0, 0.1, 0.2, ..., 1. This helps to build the final probability distribution.

The outputs of all these level-0 models are concatenated to train a feedforward neural network with the RPS as loss function.

diagram

The last 30 days of the train dataset are used to generate the labels and the target stock input. The remaining 29 days are used to generate the time series input.

The train/validation split is done at a sku level:

  • For level-0 models: 450000 sku's are used for training and the rest for validation.
  • For the level-1 model: the sku's used for training level-0 models are removed from the dataset and the remaining sku's are split again into train/validation.

Once all models are trained, the last 29 days of the train dataset and the provided target stock values are used as input to generate the submission.

Disclaimer: the entire solution lacks some fine tuning since I came up with this little ensemble monster towards the end of the competition. I didn't have the time to fine-tune each model (there are technically 16 models to tune if we consider each quantile regressor as an independent model).

How to run the solution

Requirements

  • TensorFlow v2.
  • Pandas.
  • Numpy.
  • Scikit-learn.

CUDA drivers and a CUDA-compatible GPU is required (I didn't have the time to test this on a CPU).

Some scripts require up to 30GB of RAM (again, I didn't have the time to implement a more memory-efficient solution).

The solution was tested on Ubuntu 20.04 with Python 3.8.10.

Downloading the dataset

Download the dataset files from https://ml-challenge.mercadolibre.com/downloads and put them into the dataset/ directory.

On linux, you can do that by running:

cd dataset && wget \
https://meli-data-challenge.s3.amazonaws.com/2021/test_data.csv \
https://meli-data-challenge.s3.amazonaws.com/2021/train_data.parquet \
https://meli-data-challenge.s3.amazonaws.com/2021/items_static_metadata_full.jl

Running the scripts

All-in-one script

A convenient script to run the entire solution is provided:

cd src
./run-solution.sh

Note: the entire process may take more than 3 hours to run.

Step by step

If you find trouble running the al-in-one script, you can run the solution step by step following the instructions bellow:

cd into the src directory:

cd src

Extract time series from the dataset:

python3 ./preprocessing/extract-time-series.py

Generate a supervised learning dataset:

python3 ./preprocessing/generate-sl-dataset.py

Train all level-0 models:

python3 ./train-all.py

Train the level-1 ensemble:

python3 ./train-ensemble.py

Generate the submission file and gzip it:

python3 ./generate-submission.py && gzip ./submission.csv

Utility scripts

The training_scripts directory contains some scripts to train each model separately, example usage:

python3 ./training_scripts/train-lstm.py
Owner
Matias Moreyra
Electronics Engineer, Software Developer.
Matias Moreyra
Video2x - A lossless video/GIF/image upscaler achieved with waifu2x, Anime4K, SRMD and RealSR.

Official Discussion Group (Telegram): https://t.me/video2x A Discord server is also available. Please note that most developers are only on Telegram.

K4YT3X 5.9k Dec 31, 2022
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

tarsin 111 Dec 28, 2022
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Code Artifacts Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driv

Andrea Stocco 2 Aug 24, 2022
Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection Introduction This repository includes codes and models of "Effect of De

Amir Abbasi 5 Sep 05, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
This repository is the official implementation of Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models

Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models Link to paper Abstract We study prediction of future out

Rickard Karlsson 2 Aug 19, 2022
Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Faury Louis 1 Jan 22, 2022
CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
A research toolkit for particle swarm optimization in Python

PySwarms is an extensible research toolkit for particle swarm optimization (PSO) in Python. It is intended for swarm intelligence researchers, practit

Lj Miranda 1k Dec 30, 2022
Image based Human Fall Detection

Here I integrated the YOLOv5 object detection algorithm with my own created dataset which consists of human activity images to achieve low cost, high accuracy, and real-time computing requirements

UTTEJ KUMAR 12 Dec 11, 2022
Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System

Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System The possibilities to involve

Babu Kumaran Nalini 0 Nov 19, 2021
Sharpness-Aware Minimization for Efficiently Improving Generalization

Sharpness-Aware-Minimization-TensorFlow This repository provides a minimal implementation of sharpness-aware minimization (SAM) (Sharpness-Aware Minim

Sayak Paul 54 Dec 08, 2022
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Yechan Kim 8 Oct 29, 2022
City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Code

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Requirements Python 3.8 or later with all requirements.txt dependencies installed,

88 Dec 12, 2022
GE2340 project source code without credentials.

GE2340-Project-Public GE2340 project source code without credentials. Run the bot.py to start the bot Telegram: @jasperwong_ge2340_bot If the bot does

0 Feb 10, 2022