Meli Data Challenge 2021 - First Place Solution

Overview

Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021, first place in both public and private leaderboards.

The Model

My final model is an ensemble combining recurrent neural networks and XGBoost regressors. Neural networks are trained to predict the stock days probability distribution using the RPS as loss function. XGBoost regressors are trained to predict stock days using different objectives, here the intuition behind this:

  • MSE loss: the regressor trained with this loss will output values close to the expected mean.
  • Pseudo-Huber loss: an alternative for the MAE loss, this regressor outputs values close to the expected median.
  • Quantile loss: 11 regressors are trained using a quantile loss with alpha 0, 0.1, 0.2, ..., 1. This helps to build the final probability distribution.

The outputs of all these level-0 models are concatenated to train a feedforward neural network with the RPS as loss function.

diagram

The last 30 days of the train dataset are used to generate the labels and the target stock input. The remaining 29 days are used to generate the time series input.

The train/validation split is done at a sku level:

  • For level-0 models: 450000 sku's are used for training and the rest for validation.
  • For the level-1 model: the sku's used for training level-0 models are removed from the dataset and the remaining sku's are split again into train/validation.

Once all models are trained, the last 29 days of the train dataset and the provided target stock values are used as input to generate the submission.

Disclaimer: the entire solution lacks some fine tuning since I came up with this little ensemble monster towards the end of the competition. I didn't have the time to fine-tune each model (there are technically 16 models to tune if we consider each quantile regressor as an independent model).

How to run the solution

Requirements

  • TensorFlow v2.
  • Pandas.
  • Numpy.
  • Scikit-learn.

CUDA drivers and a CUDA-compatible GPU is required (I didn't have the time to test this on a CPU).

Some scripts require up to 30GB of RAM (again, I didn't have the time to implement a more memory-efficient solution).

The solution was tested on Ubuntu 20.04 with Python 3.8.10.

Downloading the dataset

Download the dataset files from https://ml-challenge.mercadolibre.com/downloads and put them into the dataset/ directory.

On linux, you can do that by running:

cd dataset && wget \
https://meli-data-challenge.s3.amazonaws.com/2021/test_data.csv \
https://meli-data-challenge.s3.amazonaws.com/2021/train_data.parquet \
https://meli-data-challenge.s3.amazonaws.com/2021/items_static_metadata_full.jl

Running the scripts

All-in-one script

A convenient script to run the entire solution is provided:

cd src
./run-solution.sh

Note: the entire process may take more than 3 hours to run.

Step by step

If you find trouble running the al-in-one script, you can run the solution step by step following the instructions bellow:

cd into the src directory:

cd src

Extract time series from the dataset:

python3 ./preprocessing/extract-time-series.py

Generate a supervised learning dataset:

python3 ./preprocessing/generate-sl-dataset.py

Train all level-0 models:

python3 ./train-all.py

Train the level-1 ensemble:

python3 ./train-ensemble.py

Generate the submission file and gzip it:

python3 ./generate-submission.py && gzip ./submission.csv

Utility scripts

The training_scripts directory contains some scripts to train each model separately, example usage:

python3 ./training_scripts/train-lstm.py
Owner
Matias Moreyra
Electronics Engineer, Software Developer.
Matias Moreyra
Collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

The repository collects many various multi-modal transformer architectures, including image transformer, video transformer, image-language transformer, video-language transformer and related datasets

Jun Chen 139 Dec 21, 2022
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr

25 May 29, 2022
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Xuhua Huang 5 Aug 02, 2022
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 09, 2022
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
Implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT : Cross-Attention Multi-Scale Vision Transformer for Image Classification This is an unofficial PyTorch implementation of CrossViT: Cross-Att

Rishikesh (ऋषिकेश) 103 Nov 25, 2022
Generalized hybrid model for mode-locked laser diodes with an extended passive cavity

GenHybridMLLmodel Generalized hybrid model for mode-locked laser diodes with an extended passive cavity This hybrid simulation strategy combines a tra

Stijn Cuyvers 3 Sep 21, 2022
なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモ

FaceDetection-Anti-Spoof-Demo なりすまし検出(anti-spoof-mn3)のWebカメラ向けデモです。 モデルはPINTO_model_zoo/191_anti-spoof-mn3からONNX形式のモデルを使用しています。 Requirement mediapipe

KazuhitoTakahashi 8 Nov 18, 2022
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
Multi Task RL Baselines

MTRL Multi Task RL Algorithms Contents Introduction Setup Usage Documentation Contributing to MTRL Community Acknowledgements Introduction M

Facebook Research 171 Jan 09, 2023
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Phil Wang 1.5k Jan 02, 2023
Implementation of momentum^2 teacher

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning Requirements All experiments are done with python3.6, torch

jemmy li 121 Sep 26, 2022