Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Overview

Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Official PyTorch Implementation of the paper Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Youcai Zhang, Yuhao Cheng, Xinyu Huang, Fei Wen, Rui Feng, Yaqian Li, Yandong Guo
OPPO Research Institute, Shanghai Jiao Tong University, Fudan University

Abstract

Multi-label learning in the presence of missing labels(MLML) is a challenging problem. Existing methods mainly focus on the design of network structures or training schemes, which increase the complexity of implementation. This work seeks to fulfill the potential of loss function in MLML without increasing the procedure and complexity. Toward this end, we propose two simple yet effective methods via robust loss design based on an observation that a model can identify missing labels during training with a high precision. The first is a novel robust loss for negatives, namely the Hill loss, which re-weights negatives in the shape of a hill to alleviate the effect of false negatives. The second is a self-paced loss correction (SPLC) method, which uses a loss derived from the maximum likelihood criterion under an approximate distribution of missing labels. Comprehensive experiments on a vast range of multi-label image classification datasets demonstrate that our methods can remarkably boost the performance of MLML and achieve new state-of-the-art loss functions in MLML.

Credit to previous work

This repository is built upon the code base of ASL, thanks very much!

Datasets

We construct the training sets of missing labels by randomly dropping positive labels of each training image with different ratios.

samples classes Labels avg. label/img File
COCO-full labels 82,081 80 241,035 2.9 coco_train_full.txt
COCO-75% labels left 82,081 80 181,422 2.2 coco_train_0.75left.txt
COCO-40% labels left 82,081 80 96,251 1.2 coco_train_0.4left.txt
COCO-single label 82,081 80 82,081 1.0 coco_train_singlelabel.txt

Loss Implementation

In this PyTorch file, we provide implementations of our loss functions: Hill and SPLC. The loss functions take logits (predicted logits before sigmoid) and targets as input, and return the loss. Note that SPLC also takes current training epoch as input.

  • class Hill(nn.Module)
  • class SPLC(nn.Module)

Training Code

Training model by selecting different losses:

python train.py --loss Hill --data {path to dataset} --dataset {select training dataset}
python train.py --loss SPLC --data {path to dataset} --dataset {select training dataset}

For example:

python train.py --loss Hill --data '/home/MSCOCO_2014/' --dataset './dataset/coco_train_0.4left.txt'

Validation Code

We provide validation code that reproduces results reported in the paper on MS-COCO:

python validate.py --model_path {path to model to validate} --data {path to dataset}

Citation

  @misc{zhang2021simple,
        title={Simple and Robust Loss Design for Multi-Label Learning with Missing Labels}, 
        author={Youcai Zhang and Yuhao Cheng and Xinyu Huang and Fei Wen and Rui Feng and Yaqian Li and Yandong Guo},
        year={2021},
        eprint={2112.07368},
        archivePrefix={arXiv},
        primaryClass={cs.LG}
  }
Owner
Xinyu Huang
Xinyu Huang
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

43 Dec 26, 2022
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

123 Dec 27, 2022
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

MOSES 656 Dec 29, 2022
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Yaoming Cai 5 Jul 18, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
Automatic learning-rate scheduler

AutoLRS This is the PyTorch code implementation for the paper AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly published

Yuchen Jin 33 Nov 18, 2022
Bayesian regularization for functional graphical models.

BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and

0 Oct 07, 2021
FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT Preparation For instructions on generating data, plea

Lizonghang 9 Dec 22, 2022
Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning"

CMSF Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning" Requirements Python = 3.7.6 PyTorch

4 Nov 25, 2022
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
FridaHookAppTool - Frida Hook App Tool With Python

FridaHookAppTool(以下是Hook mpaas框架的例子) mpaas移动开发框架ios端抓包hook脚本 使用方法:链接数据线,开启burp设置

13 Nov 30, 2022
Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020)

Forest R-CNN: Large-Vocabulary Long-Tailed Object Detection and Instance Segmentation (ACM MM 2020) Official implementation of: Forest R-CNN: Large-Vo

Jialian Wu 54 Jan 06, 2023
Attention-guided gan for synthesizing IR images

SI-AGAN Attention-guided gan for synthesizing IR images This repository contains the Tensorflow code for "Pedestrian Gender Recognition by Style Trans

1 Oct 25, 2021
Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Datasets"

Replication Package for "An Empirical Study of the Effectiveness of an Ensemble of Stand-alone Sentiment Detection Tools for Software Engineering Data

2 Oct 06, 2022
Generative Adversarial Text to Image Synthesis

Text To Image Synthesis This is a tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the pa

Hao 575 Jan 08, 2023
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021