sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

Overview

sequitur

sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three different autoencoder architectures in PyTorch, and a predefined training loop. sequitur is ideal for working with sequential data ranging from single and multivariate time series to videos, and is geared for those who want to get started quickly with autoencoders.

import torch
from sequitur.models import LINEAR_AE
from sequitur import quick_train

train_seqs = [torch.randn(4) for _ in range(100)] # 100 sequences of length 4
encoder, decoder, _, _ = quick_train(LINEAR_AE, train_seqs, encoding_dim=2, denoise=True)

encoder(torch.randn(4)) # => torch.tensor([0.19, 0.84])

Each autoencoder learns to represent input sequences as lower-dimensional, fixed-size vectors. This can be useful for finding patterns among sequences, clustering sequences, or converting sequences into inputs for other algorithms.

Installation

Requires Python 3.X and PyTorch 1.2.X

You can install sequitur with pip:

$ pip install sequitur

Getting Started

1. Prepare your data

First, you need to prepare a set of example sequences to train an autoencoder on. This training set should be a list of torch.Tensors, where each tensor has shape [num_elements, *num_features]. So, if each example in your training set is a sequence of 10 5x5 matrices, then each example would be a tensor with shape [10, 5, 5].

2. Choose an autoencoder

Next, you need to choose an autoencoder model. If you're working with sequences of numbers (e.g. time series) or 1D vectors (e.g. word vectors), then you should use the LINEAR_AE or LSTM_AE model. For sequences of 2D matrices (e.g. videos) or 3D matrices (e.g. fMRI scans), you'll want to use CONV_LSTM_AE. Each model is a PyTorch module, and can be imported like so:

from sequitur.models import CONV_LSTM_AE

More details about each model are in the "Models" section below.

3. Train the autoencoder

From here, you can either initialize the model yourself and write your own training loop, or import the quick_train function and plug in the model, training set, and desired encoding size, like so:

import torch
from sequitur.models import CONV_LSTM_AE
from sequitur import quick_train

train_set = [torch.randn(10, 5, 5) for _ in range(100)]
encoder, decoder, _, _ = quick_train(CONV_LSTM_AE, train_set, encoding_dim=4)

After training, quick_train returns the encoder and decoder models, which are PyTorch modules that can encode and decode new sequences. These can be used like so:

x = torch.randn(10, 5, 5)
z = encoder(x) # Tensor with shape [4]
x_prime = decoder(z) # Tensor with shape [10, 5, 5]

API

Training your Model

quick_train(model, train_set, encoding_dim, verbose=False, lr=1e-3, epochs=50, denoise=False, **kwargs)

Lets you train an autoencoder with just one line of code. Useful if you don't want to create your own training loop. Training involves learning a vector encoding of each input sequence, reconstructing the original sequence from the encoding, and calculating the loss (mean-squared error) between the reconstructed input and the original input. The autoencoder weights are updated using the Adam optimizer.

Parameters:

  • model (torch.nn.Module): Autoencoder model to train (imported from sequitur.models)
  • train_set (list): List of sequences (each a torch.Tensor) to train the model on; has shape [num_examples, seq_len, *num_features]
  • encoding_dim (int): Desired size of the vector encoding
  • verbose (bool, optional (default=False)): Whether or not to print the loss at each epoch
  • lr (float, optional (default=1e-3)): Learning rate
  • epochs (int, optional (default=50)): Number of epochs to train for
  • **kwargs: Parameters to pass into model when it's instantiated

Returns:

  • encoder (torch.nn.Module): Trained encoder model; takes a sequence (as a tensor) as input and returns an encoding of the sequence as a tensor of shape [encoding_dim]
  • decoder (torch.nn.Module): Trained decoder model; takes an encoding (as a tensor) and returns a decoded sequence
  • encodings (list): List of tensors corresponding to the final vector encodings of each sequence in the training set
  • losses (list): List of average MSE values at each epoch

Models

Every autoencoder inherits from torch.nn.Module and has an encoder attribute and a decoder attribute, both of which also inherit from torch.nn.Module.

Sequences of Numbers

LINEAR_AE(input_dim, encoding_dim, h_dims=[], h_activ=torch.nn.Sigmoid(), out_activ=torch.nn.Tanh())

Consists of fully-connected layers stacked on top of each other. Can only be used if you're dealing with sequences of numbers, not vectors or matrices.

Parameters:

  • input_dim (int): Size of each input sequence
  • encoding_dim (int): Size of the vector encoding
  • h_dims (list, optional (default=[])): List of hidden layer sizes for the encoder
  • h_activ (torch.nn.Module or None, optional (default=torch.nn.Sigmoid())): Activation function to use for hidden layers; if None, no activation function is used
  • out_activ (torch.nn.Module or None, optional (default=torch.nn.Tanh())): Activation function to use for the output layer in the encoder; if None, no activation function is used

Example:

To create the autoencoder shown in the diagram above, use the following arguments:

from sequitur.models import LINEAR_AE

model = LINEAR_AE(
  input_dim=10,
  encoding_dim=4,
  h_dims=[8, 6],
  h_activ=None,
  out_activ=None
)

x = torch.randn(10) # Sequence of 10 numbers
z = model.encoder(x) # z.shape = [4]
x_prime = model.decoder(z) # x_prime.shape = [10]

Sequences of 1D Vectors

LSTM_AE(input_dim, encoding_dim, h_dims=[], h_activ=torch.nn.Sigmoid(), out_activ=torch.nn.Tanh())

Autoencoder for sequences of vectors which consists of stacked LSTMs. Can be trained on sequences of varying length.

Parameters:

  • input_dim (int): Size of each sequence element (vector)
  • encoding_dim (int): Size of the vector encoding
  • h_dims (list, optional (default=[])): List of hidden layer sizes for the encoder
  • h_activ (torch.nn.Module or None, optional (default=torch.nn.Sigmoid())): Activation function to use for hidden layers; if None, no activation function is used
  • out_activ (torch.nn.Module or None, optional (default=torch.nn.Tanh())): Activation function to use for the output layer in the encoder; if None, no activation function is used

Example:

To create the autoencoder shown in the diagram above, use the following arguments:

from sequitur.models import LSTM_AE

model = LSTM_AE(
  input_dim=3,
  encoding_dim=7,
  h_dims=[64],
  h_activ=None,
  out_activ=None
)

x = torch.randn(10, 3) # Sequence of 10 3D vectors
z = model.encoder(x) # z.shape = [7]
x_prime = model.decoder(z, seq_len=10) # x_prime.shape = [10, 3]

Sequences of 2D/3D Matrices

CONV_LSTM_AE(input_dims, encoding_dim, kernel, stride=1, h_conv_channels=[1], h_lstm_channels=[])

Autoencoder for sequences of 2D or 3D matrices/images, loosely based on the CNN-LSTM architecture described in Beyond Short Snippets: Deep Networks for Video Classification. Uses a CNN to create vector encodings of each image in an input sequence, and then an LSTM to create encodings of the sequence of vectors.

Parameters:

  • input_dims (tuple): Shape of each 2D or 3D image in the input sequences
  • encoding_dim (int): Size of the vector encoding
  • kernel (int or tuple): Size of the convolving kernel; use tuple to specify a different size for each dimension
  • stride (int or tuple, optional (default=1)): Stride of the convolution; use tuple to specify a different stride for each dimension
  • h_conv_channels (list, optional (default=[1])): List of hidden channel sizes for the convolutional layers
  • h_lstm_channels (list, optional (default=[])): List of hidden channel sizes for the LSTM layers

Example:

from sequitur.models import CONV_LSTM_AE

model = CONV_LSTM_AE(
  input_dims=(50, 100),
  encoding_dim=16,
  kernel=(5, 8),
  stride=(3, 5),
  h_conv_channels=[4, 8],
  h_lstm_channels=[32, 64]
)

x = torch.randn(22, 50, 100) # Sequence of 22 50x100 images
z = model.encoder(x) # z.shape = [16]
x_prime = model.decoder(z, seq_len=22) # x_prime.shape = [22, 50, 100]
Owner
Jonathan Shobrook
Jonathan Shobrook
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
Addon and nodes for working with structural biology and molecular data in Blender.

Molecular Nodes 🧬 🔬 💻 Buy Me a Coffee to Keep Development Going! Join a Community of Blender SciVis People! What is Molecular Nodes? Molecular Node

Brady Johnston 456 Jan 08, 2023
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention"

PyTorch implementation of "LayoutTransformer: Layout Generation and Completion with Self-attention" to appear in ICCV 2021

Kamal Gupta 75 Dec 23, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
Experimental solutions to selected exercises from the book [Advances in Financial Machine Learning by Marcos Lopez De Prado]

Advances in Financial Machine Learning Exercises Experimental solutions to selected exercises from the book Advances in Financial Machine Learning by

Brian 1.4k Jan 04, 2023
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
ppo_pytorch_cpp - an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
Explanatory Learning: Beyond Empiricism in Neural Networks

Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets

GLADIA Research Group 10 Dec 06, 2022
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Phil Wang 1.5k Jan 02, 2023
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023