We evaluate our method on different datasets (including ShapeNet, CUB-200-2011, and Pascal3D+) and achieve state-of-the-art results, outperforming all the other supervised and unsupervised methods and 3D representations, all in terms of performance, accuracy, and training time.

Overview

An Effective Loss Function for Generating 3D Models from Single 2D Image without Rendering

Papers with code | Paper

Nikola Zubić   Pietro Lio  

University of Novi Sad   University of Cambridge

AIAI 2021

Citation

Besides AIAI 2021, our paper is in a Springer's book entitled "Artificial Intelligence Applications and Innovations": link

Please, cite our paper if you find this code useful for your research.

@article{zubic2021effective,
  title={An Effective Loss Function for Generating 3D Models from Single 2D Image without Rendering},
  author={Zubi{\'c}, Nikola and Li{\`o}, Pietro},
  journal={arXiv preprint arXiv:2103.03390},
  year={2021}
}

Prerequisites

  • Download code:
    Git clone the code with the following command:

    git clone https://github.com/NikolaZubic/2dimageto3dmodel.git
    
  • Open the project with Conda Environment (Python 3.7)

  • Install packages:

    conda install pytorch torchvision torchaudio cudatoolkit=11.0 -c pytorch
    

    Then git clone Kaolin library in the root (2dimageto3dmodel) folder with the following commit and run the following commands:

    cd kaolin
    python setup.py install
    pip install --no-dependencies nuscenes-devkit opencv-python-headless scikit-learn joblib pyquaternion cachetools
    pip install packaging
    

Run the program

Run the following commands from the root/code/ (2dimageto3dmodel/code/) directory:

python main.py --dataset cub --batch_size 16 --weights pretrained_weights_cub --save_results

for the CUB Birds Dataset.

python main.py --dataset p3d --batch_size 16 --weights pretrained_weights_p3d --save_results

for the Pascal 3D+ Dataset.

The results will be saved at 2dimageto3dmodel/code/results/ path.

Continue training

To continue the training process:
Run the following commands (without --save_results) from the root/code/ (2dimageto3dmodel/code/) directory:

python main.py --dataset cub --batch_size 16 --weights pretrained_weights_cub

for the CUB Birds Dataset.

python main.py --dataset p3d --batch_size 16 --weights pretrained_weights_p3d

for the Pascal 3D+ Dataset.

License

MIT

Acknowledgment

This idea has been built based on the architecture of Insafutdinov & Dosovitskiy.
Poisson Surface Reconstruction was used for Point Cloud to 3D Mesh transformation.
The GAN architecture (used for texture mapping) is a mixture of Xian's TextureGAN and Li's GAN.

Comments
  • Where is cmr_data?

    Where is cmr_data?

    Keep running into this issue from cmr_data.p3d import P3dDataset and from cmr_data.p3d import CUBDataset

    but you do not have these files in your repo. I tried using cub_200_2011_dataset.py but it does not take in the same number of arguments as the CUBDataset class used in run_reconstruction.py.

    opened by achhabria7 6
  • ModuleNotFoundError: No module named 'kaolin.graphics'

    ModuleNotFoundError: No module named 'kaolin.graphics'

    Pascal 3D+ dataset with 4722 images is successfully loaded.

    Traceback (most recent call last): File "main.py", line 149, in <module> from rendering.renderer import Renderer File "/home/ujjawal/my_work/object_recon/2d3d/code/rendering/renderer.py", line 1, in <module> from kaolin.graphics.dib_renderer.rasterizer import linear_rasterizer ModuleNotFoundError: No module named kaolin.graphics

    I also downloaded the graphics folder from here https://github.com/NVIDIAGameWorks/kaolin/tree/e7e513173bd4159ae45be6b3e156a3ad156a3eb9 and tried to place in the graphics folder in the kaolin folder locally and here is the error Traceback (most recent call last): File "main.py", line 149, in <module> from rendering.renderer import Renderer File "/home/ujjawal/my_work/object_recon/2d3d/code/rendering/renderer.py", line 1, in <module> from kaolin.graphics.dib_renderer.rasterizer import linear_rasterizer File "/usr/local/lib/python3.6/dist-packages/kaolin-0.9.0-py3.6-linux-x86_64.egg/kaolin/graphics/__init__.py", line 2, in <module> File "/usr/local/lib/python3.6/dist-packages/kaolin-0.9.0-py3.6-linux-x86_64.egg/kaolin/graphics/nmr/__init__.py", line 1, in <module> File "/usr/local/lib/python3.6/dist-packages/kaolin-0.9.0-py3.6-linux-x86_64.egg/kaolin/graphics/nmr/rasterizer.py", line 30, in <module> ImportError: cannot import name rasterize_cuda

    opened by ujjawalcse 6
  • No module named 'models.reconstruction'

    No module named 'models.reconstruction'

    Dear NikolaZubic :
    Thanks for you updated the code recently. Did you put the reconstruction.py in the models folder?When I run “python run_reconstruction.py --name pretrained_reconstruction_cub --dataset cub --batch_size 10 --generate_pseudogt” it display
    No module named 'models.reconstruction.

    opened by lw0210 2
  • inference with single RGB pictures

    inference with single RGB pictures

    Hi, I am interested with your work, it is wonderful, and I want to use my own picture to test the model, could you provided the pretrained model and inference scripts.

    opened by 523997931 2
  • can't find the pseudogt_512*512\.npz file

    can't find the pseudogt_512*512\.npz file

    Dear NikolaZubic: I want to quote your paper, but I can't find the pseudogt_512512.npz file and can't reproduce it. Can you give me the pseudogt_512512.npz file and help me reproduce it? Thanks

    opened by Yangfuha 1
  • ValueError: Training a model requires the pseudo-ground-truth to be setup beforehand.

    ValueError: Training a model requires the pseudo-ground-truth to be setup beforehand.

    I recently read your paper and was very interested in it . I want to reproduce the code of this paper. When I followed your instructions, I found it difficult for me to run the commands(python main.py --dataset cub --batch_size 16 --weights pretrained_weights_cub and python main.py --dataset p3d --batch_size 16 --weights pretrained_weights_p3d.).And the program displayed a value error that training a model requires the pseudo-ground-truth to be setup beforehand. And I don’t know how to solve the problem, so I turn to you for help.I'm sorry to bother you, but I'really eager to solve the problem. I hope to get your reply.Thank you!

    opened by lw0210 1
  • Added step: switch to the correct correct Kaolin branch

    Added step: switch to the correct correct Kaolin branch

    This step will help others to avoid the "ModuleNotFoundError: No module named kaolin.graphics" error.

    Fix to issue: https://github.com/NikolaZubic/2dimageto3dmodel/issues/2

    opened by ricklentz 1
  • Shapenet V2 not training

    Shapenet V2 not training

    Great work guys. I was able to run the code on CUB dataset. But when I tried to run training_test_shape_net.py on Shape Net v2 chair class I'm getting errors because of missing files, unmatched file names, etc.

    So it would be helpful if you provide Shapenet Dataset Folder structure and files(images, masks) description or a sample folder and clear instructions for training the model shapenet dataset. And also if possible give pre-trained weights for the Shape net dataset models

    Thank you

    opened by girishdhegde 0
  • Pretrained model

    Pretrained model

    Hi, I find it hard to understand how to train the model on ShapeNet. It would be very helpful if you can provide a pretrained model on ShapeNet planes (I need it to test the performance in my project). If the pretrained models are not available, it would also be helpful to introduce me of how to train the model on ShapeNet.

    opened by YYYYYHC 0
  • How can I train on the boat set of the Pascal 3D+ dataset

    How can I train on the boat set of the Pascal 3D+ dataset

    I find the data of trainning such as "python run_reconstruction.py --name pretrained_reconstruction_p3d --dataset p3d --optimize_z0 --batch_size 50 --tensorboard" using the data of car.mat in sfm and data folder.Even if I rename the .mat to boat.mat and using the boat imageNet in Pascal 3D+ dataset,I find the shape of the result is more like a car not a boat.So I am wondering how to train the boat set.

    opened by lisentao 0
  • Custom Dataset

    Custom Dataset

    Hi!

    Love the work you guys have done. I am currently conducting a research. Could you please tell me how I would train on a custom dataset and how I would infer an image or create a 3d model out an image with pretrained weights that you have provided?

    opened by mahnoor-fatima-saad 0
  • How do I make my own dataset?

    How do I make my own dataset?

    Dear NikolaZubic: I want to use my own data set to replace the cub or P3D data set for training. Do you have any attention or requirements for images when making data sets?

    opened by lw0210 0
Releases(metadata)
Owner
Nikola Zubić
Interested in Artificial intelligence, Visual Computing and Cognitive science. For future AI projects: @reinai
Nikola Zubić
Only works with the dashboard version / branch of jesse

Jesse optuna Only works with the dashboard version / branch of jesse. The config.yml should be self-explainatory. Installation # install from git pip

Markus K. 8 Dec 04, 2022
Utilities to bridge Canvas-generated course rosters with GitLab's API.

gitlab-canvas-utils A collection of scripts originally written for CSE 13S. Oversees everything from GitLab course group creation, student repository

Eugene Chou 5 Jun 08, 2022
Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

6.5k Jan 01, 2023
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
Air Pollution Prediction System using Linear Regression and ANN

AirPollution Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living Publication Link:

Dr Sharnil Pandya, Associate Professor, Symbiosis International University 19 Feb 07, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our n

58 Dec 23, 2022
Deep Learning Specialization by Andrew Ng, deeplearning.ai.

Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l

Engen 1.5k Jan 07, 2023
Code for ViTAS_Vision Transformer Architecture Search

Vision Transformer Architecture Search This repository open source the code for ViTAS: Vision Transformer Architecture Search. ViTAS aims to search fo

46 Dec 17, 2022
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
Hcaptcha-challenger - Gracefully face hCaptcha challenge with Yolov5(ONNX) embedded solution

hCaptcha Challenger 🚀 Gracefully face hCaptcha challenge with Yolov5(ONNX) embe

593 Jan 03, 2023
This is the code related to "Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation" (ICCV 2021).

Sparse-to-dense Feature Matching: Intra and Inter domain Cross-modal Learning in Domain Adaptation for 3D Semantic Segmentation This is the code relat

39 Sep 23, 2022
Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer"

SCGAN Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer" Prepare The pre-trained model is avaiable at http

118 Dec 12, 2022
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

65 Dec 22, 2022
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021