🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

Overview

Super Resolution for Real Time Image Enhancement

Final Results from Validation data

Introduction

It is no suprising that adversarial training is indeed possible for super resolution tasks. The problem with pretty much all the state of the art models is that they are just not usable for native deployment, because of 100s of MBs of model size.

Also, most of the known super resolution frameworks only works on single compression method, such as bicubic, nearest, bilinear etc. Which helps the model a lot to beat the previous state of the art scores but they perform poorly on real life low resolution images because they might not belong to the same compression method for which the model was trained for.

So for me the main goal with this project wasn't just to create yet another super resolution model, but to develop a lightest model as possible which works well on any random compression methods.

With this goal in mind, I tried adopting the modern super resolution frameworks such as relativistic adversarial training, and content loss optimization (I've mainly followed the ESRGAN, with few changes in the objective function), and finally was able to create a model of size 5MB!!!

API Usage

from inference import enhance_image

enhance_image(
    lr_image, # 
   
    , # or lr_path = 
    
     ,
    
   
    sr_path, # ,
    visualize, # 
   
    size, # 
   
    ,
   
    )

CLI Usage

usage: inference.py [-h] [--lr-path LR_PATH] [--sr-path SR_PATH]

Super Resolution for Real Time Image Enhancement

optional arguments:
  -h, --help         show this help message and exit
  --lr-path LR_PATH  Path to the low resolution image.
  --sr-path SR_PATH  Output path where the enhanced image would be saved.

Model architectures

The main building block of the generator is the Residual in Residual Dense Block (RRDB), which consists of classic DenseNet module but coupled with a residual connection

Now in the original paper the authors mentioned to remove the batch normalization layer in order to remove the checkboard artifacts, but due to the extreme small size of my model, I found utilizing the batch normalization layer quite effective for both speeding up the training and better quality results.

Another change I made in the original architecture is replacing the nearest upsampling proceedure with the pixel shuffle, which helped a lot to produce highly detailed outputs given the size of the model.

The discriminator is made up of blocks of classifc convolution layer followed by batch normalization followed by leaky relu non linearity.

Relativistic Discriminator

A relativistic discriminator tries to predict the probability that a real image is relatively more realistic than a fake one.

So the discriminator and the generator are optimized to minizize these corresponding losses:

Discriminator's adversarial loss:

Generator's adversarial loss:

Perceptual Loss (Final objective for the Generator)

Original perceptual loss introduced in SRGAN paper combines the adversarial loss and the content loss obtained from the features of final convolution layers of the VGG Net.

Effectiveness of perceptual loss if found increased by constraining on features before activation rather than after activation as practiced in SRGAN.

To make the Perceptual loss more effective, I additionally added the preactivation features disparity from both shallow and deep layers, making the generator produce better results.

In addition to content loss and relativistic adversarial optimization, a simple pixel loss is also added to the generator's final objective as per the paper.

Now based on my experiments I found it really hard for the generator to produce highly detailed outputs when its also minimizing the pixel loss (I'm imputing this observation to the fact that my model is very small).

This is a bit surprising because optimizing an additional objective function which has same optima should help speeding up the training. My interpretation is since super resolution is not a one to one matching, as multiple results are there for a single low resolution patch (more on patch size below), so forcing the generator to converge to a single output would cause the generator to not produce detailed but instead the average of all those possible outputs.

So I tried reducing the pixel loss weight coefficient down to 1e-2 to 1e-4 as described in the paper, and then compared the results with the generator trained without any pixel loss, and found that pixel loss has no significant visual improvements. So given my constrained training environment (Google Colab), I decided not to utilize the pixel loss as one of the part of generator's loss.

So here's the generator's final loss:

Patch size affect

Ideally larger the patch size better the adversarial training hence better the results, since an enlarged receptive field helps both the models to capture more semantic information. Therefore the paper uses 96x96 to 192x192 as the patch size resolution, but since I was constrained to utilize Google Colab, my patch size was only 32x32 😶 , and that too with batch size of 8.

Multiple compression methods

The idea is to make the generator independent of the compression that is applied to the training dataset, so that its much more robust in real life samples.

For this I randomly applied the nearest, bilinear and bicubic compressions on all the data points in the dataset every time a batch is processed.

Validation Results after ~500 epochs

Loss type

Value
Content Loss (L1) [5th, 10th, 20th preactivation features from VGGNet] ~38.582
Style Loss (L1) [320th preactivation features from EfficientNetB4] ~1.1752
Adversarial Loss ~1.550

Visual Comparisons

Below are some of the common outputs that most of the super resolution papers compare with (not used in the training data).

Author - Rishik Mourya

Owner
Rishik Mourya
3rd year Undergrad | ML Engineer @Nevronas.ai | ML Engineer @Skylarklabs.ai | And part-time Web Developer.
Rishik Mourya
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 08, 2023
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
An Implementation of SiameseRPN with Feature Pyramid Networks

SiameseRPN with FPN This project is mainly based on HelloRicky123/Siamese-RPN. What I've done is just add a Feature Pyramid Network method to the orig

3 Apr 16, 2022
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu

Junsoo Ha 127 Dec 14, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

Yuxin Zhang 27 Jun 28, 2022
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
Conditional Gradients For The Approximately Vanishing Ideal

Conditional Gradients For The Approximately Vanishing Ideal Code for the paper: Wirth, E., and Pokutta, S. (2022). Conditional Gradients for the Appro

IOL Lab @ ZIB 0 May 25, 2022
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021

CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/

Xavier Bresson 165 Oct 25, 2022
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
This is an open source library implementing hyperbox-based machine learning algorithms

hyperbox-brain is a Python open source toolbox implementing hyperbox-based machine learning algorithms built on top of scikit-learn and is distributed

Complex Adaptive Systems (CAS) Lab - University of Technology Sydney 21 Dec 14, 2022
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 07, 2022
python 93% acc. CNN Dogs Vs Cats ( Pytorch )

English | 简体中文(测试中...敬请期待) Cnn-Classification-Dog-Vs-Cat 猫狗辨别 (pytorch版本) CNN Resnet18 的猫狗分类器,基于ResNet及其变体网路系列,对于一般的图像识别任务表现优异,模型精准度高达93%(小型样本)。 项目制作于

apple ye 1 May 22, 2022
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.

The Ultimate PyTorch Source-Build Template Translations: 한국어 TL;DR PyTorch built from source can be x4 faster than a naïve PyTorch install. This repos

Joonhyung Lee/이준형 651 Dec 12, 2022
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

DongGeun-Yoon 19 Jun 07, 2022