🔥 Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization 🔥

Overview

Super Resolution for Real Time Image Enhancement

Final Results from Validation data

Introduction

It is no suprising that adversarial training is indeed possible for super resolution tasks. The problem with pretty much all the state of the art models is that they are just not usable for native deployment, because of 100s of MBs of model size.

Also, most of the known super resolution frameworks only works on single compression method, such as bicubic, nearest, bilinear etc. Which helps the model a lot to beat the previous state of the art scores but they perform poorly on real life low resolution images because they might not belong to the same compression method for which the model was trained for.

So for me the main goal with this project wasn't just to create yet another super resolution model, but to develop a lightest model as possible which works well on any random compression methods.

With this goal in mind, I tried adopting the modern super resolution frameworks such as relativistic adversarial training, and content loss optimization (I've mainly followed the ESRGAN, with few changes in the objective function), and finally was able to create a model of size 5MB!!!

API Usage

from inference import enhance_image

enhance_image(
    lr_image, # 
   
    , # or lr_path = 
    
     ,
    
   
    sr_path, # ,
    visualize, # 
   
    size, # 
   
    ,
   
    )

CLI Usage

usage: inference.py [-h] [--lr-path LR_PATH] [--sr-path SR_PATH]

Super Resolution for Real Time Image Enhancement

optional arguments:
  -h, --help         show this help message and exit
  --lr-path LR_PATH  Path to the low resolution image.
  --sr-path SR_PATH  Output path where the enhanced image would be saved.

Model architectures

The main building block of the generator is the Residual in Residual Dense Block (RRDB), which consists of classic DenseNet module but coupled with a residual connection

Now in the original paper the authors mentioned to remove the batch normalization layer in order to remove the checkboard artifacts, but due to the extreme small size of my model, I found utilizing the batch normalization layer quite effective for both speeding up the training and better quality results.

Another change I made in the original architecture is replacing the nearest upsampling proceedure with the pixel shuffle, which helped a lot to produce highly detailed outputs given the size of the model.

The discriminator is made up of blocks of classifc convolution layer followed by batch normalization followed by leaky relu non linearity.

Relativistic Discriminator

A relativistic discriminator tries to predict the probability that a real image is relatively more realistic than a fake one.

So the discriminator and the generator are optimized to minizize these corresponding losses:

Discriminator's adversarial loss:

Generator's adversarial loss:

Perceptual Loss (Final objective for the Generator)

Original perceptual loss introduced in SRGAN paper combines the adversarial loss and the content loss obtained from the features of final convolution layers of the VGG Net.

Effectiveness of perceptual loss if found increased by constraining on features before activation rather than after activation as practiced in SRGAN.

To make the Perceptual loss more effective, I additionally added the preactivation features disparity from both shallow and deep layers, making the generator produce better results.

In addition to content loss and relativistic adversarial optimization, a simple pixel loss is also added to the generator's final objective as per the paper.

Now based on my experiments I found it really hard for the generator to produce highly detailed outputs when its also minimizing the pixel loss (I'm imputing this observation to the fact that my model is very small).

This is a bit surprising because optimizing an additional objective function which has same optima should help speeding up the training. My interpretation is since super resolution is not a one to one matching, as multiple results are there for a single low resolution patch (more on patch size below), so forcing the generator to converge to a single output would cause the generator to not produce detailed but instead the average of all those possible outputs.

So I tried reducing the pixel loss weight coefficient down to 1e-2 to 1e-4 as described in the paper, and then compared the results with the generator trained without any pixel loss, and found that pixel loss has no significant visual improvements. So given my constrained training environment (Google Colab), I decided not to utilize the pixel loss as one of the part of generator's loss.

So here's the generator's final loss:

Patch size affect

Ideally larger the patch size better the adversarial training hence better the results, since an enlarged receptive field helps both the models to capture more semantic information. Therefore the paper uses 96x96 to 192x192 as the patch size resolution, but since I was constrained to utilize Google Colab, my patch size was only 32x32 😶 , and that too with batch size of 8.

Multiple compression methods

The idea is to make the generator independent of the compression that is applied to the training dataset, so that its much more robust in real life samples.

For this I randomly applied the nearest, bilinear and bicubic compressions on all the data points in the dataset every time a batch is processed.

Validation Results after ~500 epochs

Loss type

Value
Content Loss (L1) [5th, 10th, 20th preactivation features from VGGNet] ~38.582
Style Loss (L1) [320th preactivation features from EfficientNetB4] ~1.1752
Adversarial Loss ~1.550

Visual Comparisons

Below are some of the common outputs that most of the super resolution papers compare with (not used in the training data).

Author - Rishik Mourya

Owner
Rishik Mourya
3rd year Undergrad | ML Engineer @Nevronas.ai | ML Engineer @Skylarklabs.ai | And part-time Web Developer.
Rishik Mourya
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
🔪 Elimination based Lightweight Neural Net with Pretrained Weights

ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient

snoop2head 4 Jul 12, 2022
Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening images

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images 深度监督影像融合网络DSIFN用于高分辨率双时相遥感影像变化检测 Of

Chenxiao Zhang 135 Dec 19, 2022
a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

A Unified Objective for Novel Class Discovery This is the official repository for the paper: A Unified Objective for Novel Class Discovery Enrico Fini

Enrico Fini 118 Dec 26, 2022
Reproduce results and replicate training fo T0 (Multitask Prompted Training Enables Zero-Shot Task Generalization)

T-Zero This repository serves primarily as codebase and instructions for training, evaluation and inference of T0. T0 is the model developed in Multit

BigScience Workshop 253 Dec 27, 2022
Bayesian Deep Learning and Deep Reinforcement Learning for Object Shape Error Response and Correction of Manufacturing Systems

Bayesian Deep Learning for Manufacturing 2.0 (dlmfg) Object Shape Error Response (OSER) Digital Lifecycle Management - In Process Quality Improvement

Sumit Sinha 30 Oct 31, 2022
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
Build a medical knowledge graph based on Unified Language Medical System (UMLS)

UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int

Donghua Chen 6 Dec 25, 2022
Code and Data for the paper: Molecular Contrastive Learning with Chemical Element Knowledge Graph [AAAI 2022]

Knowledge-enhanced Contrastive Learning (KCL) Molecular Contrastive Learning with Chemical Element Knowledge Graph [ AAAI 2022 ]. We construct a Chemi

Fangyin 58 Dec 26, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 01, 2022
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
Deep Learning as a Cloud API Service.

Deep API Deep Learning as Cloud APIs. This project provides pre-trained deep learning models as a cloud API service. A web interface is available as w

Wu Han 4 Jan 06, 2023
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Yifan 54 Nov 29, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022