A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

Overview

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models

Python PyTorch CC BY 4.0

Official PyTorch Implementation

Using deep learning to optimise radiative transfer calculations.

Preliminary paper to appear at NeurIPS 2021 Datasets Track: https://openreview.net/forum?id=FZBtIpEAb5J

Abstract: Numerical simulations of Earth's weather and climate require substantial amounts of computation. This has led to a growing interest in replacing subroutines that explicitly compute physical processes with approximate machine learning (ML) methods that are fast at inference time. Within weather and climate models, atmospheric radiative transfer (RT) calculations are especially expensive. This has made them a popular target for neural network-based emulators. However, prior work is hard to compare due to the lack of a comprehensive dataset and standardized best practices for ML benchmarking. To fill this gap, we build a large dataset, ClimART, with more than 10 million samples from present, pre-industrial, and future climate conditions, based on the Canadian Earth System Model. ClimART poses several methodological challenges for the ML community, such as multiple out-of-distribution test sets, underlying domain physics, and a trade-off between accuracy and inference speed. We also present several novel baselines that indicate shortcomings of datasets and network architectures used in prior work.

Contact: Venkatesh Ramesh (venka97 at gmail) or Salva Rühling Cachay (salvaruehling at gmail).

Overview:

  • climart/: Package with the main code, baselines and ML training logic.
  • notebooks/: Notebooks for visualization of data.
  • analysis/: Scripts to create visualization of the results (requires logging).
  • scripts/: Scripts to train and evaluate models, and to download the whole ClimART dataset.

Getting Started

Requirements

  • Linux and Windows are supported, but we recommend Linux for performance and compatibility reasons.
  • NVIDIA GPUs with at least 8 GB of memory and system with 12 GB RAM (More RAM is required if training with --load_train_into_mem option which allows for faster training). We have done all testing and development using NVIDIA V100 GPUs.
  • 64-bit Python >=3.7 and PyTorch >=1.8.1. See https://pytorch.org/ for PyTorch install instructions.
  • Python libraries mentioned in ``env.yml`` file, see Getting Started (Need to have miniconda/conda installed).

Downloading the ClimART Dataset

By default, only a subset of CLimART is downloaded. To download the train/val/test years you want, please change the loop in ``data_download.sh.`` appropriately. To download the whole ClimART dataset, you can simply run

bash scripts/download_climart_full.sh 

conda env create -f env.yml   # create new environment will all dependencies
conda activate climart  # activate the environment called 'climart'
bash data_download.sh  # download the dataset (or a subset of it, see above)
# For one of {CNN, GraphNet, GCN, MLP}, run the model with its lowercase name with the following commmand:
bash scripts/train_<model-name>.sh

Dataset Structure

To avoid storage redundancy, we store one single input array for both pristine- and clear-sky conditions. The dimensions of ClimART’s input arrays are:

  • layers: (N, 49, D-lay)
  • levels: (N, 50, 4)
  • globals: (N, 82)

where N is the data dimension (i.e. the number of examples of a specific year, or, during training, of a batch), 49 and 50 are the number of layers and levels in a column respectively. Dlay, 4, 82 is the number of features/channels for layers, levels, globals respectively.

For pristine-sky Dlay = 14, while for clear-sky Dlay = 45, since it contains extra aerosol related variables. The array for pristine-sky conditions can be easily accessed by slicing the first 14 features out of the stored array, e.g.: pristine_array = layers_array[:, :, : 14]

The complete list of variables in the dataset is as follows:

Variables List

Training Options

--exp_type: "pristine" or "clear_sky" for training on the respective atmospheric conditions.
--target_type: "longwave" (thermal) or "shortwave" (solar) for training on the respective radiation type targets.
--target_variable: "Fluxes" or "Heating-rate" for training on profiles of fluxes or heating rates.
--model: ML model architecture to select for training (MLP, GCN, GN, CNN)
--workers: The number of workers to use for dataloading/multi-processing.
--device: "cuda" or "cpu" to use GPUs or not.
--load_train_into_mem: Whether to load the training data into memory (can speed up training)
--load_val_into_mem: Whether to load the validation data into memory (can speed up training)
--lr: The learning rate to use for training.
--epochs: Number of epochs to train the model for.
--optim: The choice of optimizer to use (e.g. Adam)
--scheduler: The learning rate scheduler used for training (expdecay, reducelronplateau, steplr, cosine).
--weight_decay: Weight decay to use for the optimization process.
--batch_size: Batch size for training.
--act: Activation function (e.g. ReLU, GeLU, ...).
--hidden_dims: The hidden dimensionalities to use for the model (e.g. 128 128).
--dropout: Dropout rate to use for parameters.
--loss: Loss function to train the model with (MSE recommended).
--in_normalize: Select how to normalize the data (Z, min_max, None). Z-scaling is recommended.
--net_norm: Normalization scheme to use in the model (batch_norm, layer_norm, instance_norm)
--gradient_clipping: If "norm", the L2-norm of the parameters is clipped the value of --clip. Otherwise no clipping.
--clip: Value to clip the gradient to while training.
--val_metric: Which metric to use for saving the 'best' model based on validation set. Default: "RMSE"
--gap: Use global average pooling in-place of MLP to get output (CNN only).
--learn_edge_structure: If --model=='GCN': Whether to use a L-GCN (if set) with learnable adjacency matrix, or a GCN.
--train_years: The years to select for training the data. (Either individual years 1997+1991 or range 1991-1996)
--validation_years: The years to select for validating the data. Recommended: "2005" or "2005-06" 
--test_ood_1991: Whether to load and test on OOD data from 1991 (Mt. Pinatubo; especially challenging for clear-sky conditions)
--test_ood_historic: Whether to load and test on historic/pre-industrial OOD data from 1850-52.
--test_ood_future: Whether to load and test on future OOD data from 2097-99 (under a changing climate/radiative forcing)
--wandb_model: If "online", Weights&Biases logging. If "disabled" no logging.
--expID: A unique ID for the experiment if using logging.

Reproducing our Baselines

To reproduce our paper results (for seed = 7) you may run the following commands in a shell.

CNN

python main.py --model "CNN" --exp_type "pristine" --target_type "shortwave" --workers 6 --seed 7 \
  --batch_size 128 --lr 2e-4 --optim Adam --weight_decay 1e-6 --scheduler "expdecay" \
  --in_normalize "Z" --net_norm "none" --dropout 0.0 --act "GELU" --epochs 100 \
  --gap --gradient_clipping "norm" --clip 1.0 \
  --train_years "1990+1999+2003" --validation_years "2005" \
  --wandb_mode disabled

MLP

python main.py --model "MLP" --exp_type "pristine" --target_type "shortwave" --workers 6 --seed 7 \
  --batch_size 128 --lr 2e-4 --optim Adam --weight_decay 1e-6 --scheduler "expdecay" \
  --in_normalize "Z" --net_norm "layer_norm" --dropout 0.0 --act "GELU" --epochs 100 \
  --gradient_clipping "norm" --clip 1.0 --hidden_dims 512 256 256 \
  --train_years "1990+1999+2003" --validation_years "2005" \
  --wandb_mode disabled

GCN

python main.py --model "GCN+Readout" --exp_type "pristine" --target_type "shortwave" --workers 6 --seed 7 \
  --batch_size 128 --lr 2e-4 --optim Adam --weight_decay 1e-6 --scheduler "expdecay" \
  --in_normalize "Z" --net_norm "layer_norm" --dropout 0.0 --act "GELU" --epochs 100 \
  --preprocessing "mlp_projection" --projector_net_normalization "layer_norm" --graph_pooling "mean"\
  --residual --improved_self_loops \
  --gradient_clipping "norm" --clip 1.0 --hidden_dims 128 128 128 \  
  --train_years "1990+1999+2003" --validation_years "2005" \
  --wandb_mode disabled

Logging

Currently, logging is disabled by default. However, the user may use wandb to log the experiments by passing the argument --wandb_mode=online

Notebooks

There are some jupyter notebooks in the notebooks folder which we used for plotting, benchmarking etc. You may go through them to visualize the results/benchmark the models.

License:

This work is made available under Attribution 4.0 International (CC BY 4.0) license. CC BY 4.0

Development

This repository is currently under active development and you may encounter bugs with some functionality. Any feedback, extensions & suggestions are welcome!

Citation

If you find ClimART or this repository helpful, feel free to cite our publication:

@inproceedings{cachay2021climart,
    title={{ClimART}: A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models},
    author={Salva R{\"u}hling Cachay and Venkatesh Ramesh and Jason N. S. Cole and Howard Barker and David Rolnick},
    booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
    year={2021},
    url={https://openreview.net/forum?id=FZBtIpEAb5J}
}
Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction

GraviCap Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction. Gravity-Aware Monocular 3D Human-Object

Rishabh Dabral 15 Dec 09, 2022
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th

Zhiqiang Shen 52 Dec 24, 2022
Complete-IoU (CIoU) Loss and Cluster-NMS for Object Detection and Instance Segmentation (YOLACT)

Complete-IoU Loss and Cluster-NMS for Improving Object Detection and Instance Segmentation. Our paper is accepted by IEEE Transactions on Cybernetics

290 Dec 25, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
How to train a CNN to 99% accuracy on MNIST in less than a second on a laptop

Training a NN to 99% accuracy on MNIST in 0.76 seconds A quick study on how fast you can reach 99% accuracy on MNIST with a single laptop. Our answer

Tuomas Oikarinen 42 Dec 10, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

607 Dec 31, 2022
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch

disclaimer: this code is modified from pytorch-tutorial Image classification with synthetic gradient in Pytorch I implement the Decoupled Neural Inter

Andrew 114 Dec 22, 2022
Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

40 Sep 26, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Manifold-SCA Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning The repo is org

Yuanyuan Yuan 172 Dec 29, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
'A C2C E-COMMERCE TRUST MODEL BASED ON REPUTATION' Python implementation

Project description A library providing functionalities to calculate reputation and degree of trust on C2C ecommerce platforms. The work is fully base

Davide Bigotti 2 Dec 14, 2022
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022