DuBE: Duple-balanced Ensemble Learning from Skewed Data

Overview

DuBE: Duple-balanced Ensemble Learning from Skewed Data

"Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning"
(IEEE ICDE 2022 Submission) [Documentation] [Examples]

DuBE is an ensemble learning framework for (multi)class-imbalanced classification. It is an easy-to-use solution to imbalanced learning problems, features good performance, computing efficiency, and wide compatibility with different learning models. Documentation and examples are available at https://duplebalance.readthedocs.io.

Table of Contents

Background

Imbalanced Learning (IL) is an important problem that widely exists in data mining applications. Typical IL methods utilize intuitive class-wise resampling or reweighting to directly balance the training set. However, some recent research efforts in specific domains show that class-imbalanced learning can be achieved without class-wise manipulation. This prompts us to think about the relationship between the two different IL strategies and the nature of the class imbalance. Fundamentally, they correspond to two essential imbalances that exist in IL: the difference in quantity between examples from different classes as well as between easy and hard examples within a single class, i.e., inter-class and intra-class imbalance.

image

Existing works fail to explicitly take both imbalances into account and thus suffer from suboptimal performance. In light of this, we present Duple-Balanced Ensemble, namely DUBE, a versatile ensemble learning framework. Unlike prevailing methods, DUBE directly performs inter-class and intra-class balancing without relying on heavy distance-based computation, which allows it to achieve competitive performance while being computationally efficient.

image

Install

Our DuBE implementation requires following dependencies:

You can install DuBE by clone this repository:

git clone https://github.com/ICDE2022Sub/duplebalance.git
cd duplebalance
pip install .

Usage

For more detailed usage example, please see Examples.

A minimal working example:

# load dataset & prepare environment
from duplebalance import DupleBalanceClassifier
from sklearn.datasets import make_classification

X, y = make_classification(n_samples=1000, n_classes=3,
                           n_informative=4, weights=[0.2, 0.3, 0.5],
                           random_state=0)

# ensemble training
clf = DupleBalanceClassifier(
    n_estimators=10,
    random_state=42,
    ).fit(X_train, y_train)

# predict
y_pred_test = clf.predict_proba(X_test)

Documentation

For more detailed API references, please see API reference.

Our DupleBalance implementation can be used much in the same way as the ensemble classifiers in sklearn.ensemble. The DupleBalanceClassifier class inherits from the sklearn.ensemble.BaseEnsemble base class.

Main parameters are listed below:

Parameters Description
base_estimator object, optional (default=sklearn.tree.DecisionTreeClassifier())
The base estimator to fit on self-paced under-sampled subsets of the dataset. NO need to support sample weighting. Built-in fit(), predict(), predict_proba() methods are required.
n_estimators int, optional (default=10)
The number of base estimators in the ensemble.
resampling_target {'hybrid', 'under', 'over', 'raw'}, default="hybrid"
Determine the number of instances to be sampled from each class (inter-class balancing).
- If under, perform under-sampling. The class containing the fewest samples is considered the minority class :math:c_{min}. All other classes are then under-sampled until they are of the same size as :math:c_{min}.
- If over, perform over-sampling. The class containing the argest number of samples is considered the majority class :math:c_{maj}. All other classes are then over-sampled until they are of the same size as :math:c_{maj}.
- If hybrid, perform hybrid-sampling. All classes are under/over-sampled to the average number of instances from each class.
- If raw, keep the original size of all classes when resampling.
resampling_strategy {'hem', 'shem', 'uniform'}, default="shem")
Decide how to assign resampling probabilities to instances during ensemble training (intra-class balancing).
- If hem, perform hard-example mining. Assign probability with respect to instance's latest prediction error.
- If shem, perform soft hard-example mining. Assign probability by inversing the classification error density.
- If uniform, assign uniform probability, i.e., random resampling.
perturb_alpha float or str, optional (default='auto')
The multiplier of the calibrated Gaussian noise that was add on the sampled data. It determines the intensity of the perturbation-based augmentation. If 'auto', perturb_alpha will be automatically tuned using a subset of the given training data.
k_bins int, optional (default=5)
The number of error bins that were used to approximate error distribution. It is recommended to set it to 5. One can try a larger value when the smallest class in the data set has a sufficient number (say, > 1000) of samples.
estimator_params list of str, optional (default=tuple())
The list of attributes to use as parameters when instantiating a new base estimator. If none are given, default parameters are used.
n_jobs int, optional (default=None)
The number of jobs to run in parallel for :meth:predict. None means 1 unless in a :obj:joblib.parallel_backend context. -1 means using all processors. See :term:Glossary <n_jobs> for more details.
random_state int / RandomState instance / None, optional (default=None)
If integer, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by numpy.random.
verbose int, optional (default=0)
Controls the verbosity when fitting and predicting.
A Python module for parallel optimization of expensive black-box functions

blackbox: A Python module for parallel optimization of expensive black-box functions What is this? A minimalistic and easy-to-use Python module that e

Paul Knysh 426 Dec 08, 2022
Efficient Multi Collection Style Transfer Using GAN

Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.

Zhaozheng Shen 2 Jan 15, 2022
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph Model Description Open-CyKG is a framework that is constructed using an attenti

Injy Sarhan 34 Jan 05, 2023
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

Han Xu 129 Dec 11, 2022
Machine Learning automation and tracking

The Open-Source MLOps Orchestration Framework MLRun is an open-source MLOps framework that offers an integrative approach to managing your machine-lea

873 Jan 04, 2023
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Website | ICCV paper | arXiv | Twitter This repository contains the official i

Ajay Jain 73 Dec 27, 2022
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
Parameter Efficient Deep Probabilistic Forecasting

PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr

Olivier Sprangers 10 Jun 13, 2022
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago Suárez 125 Dec 31, 2022