DuBE: Duple-balanced Ensemble Learning from Skewed Data

Overview

DuBE: Duple-balanced Ensemble Learning from Skewed Data

"Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning"
(IEEE ICDE 2022 Submission) [Documentation] [Examples]

DuBE is an ensemble learning framework for (multi)class-imbalanced classification. It is an easy-to-use solution to imbalanced learning problems, features good performance, computing efficiency, and wide compatibility with different learning models. Documentation and examples are available at https://duplebalance.readthedocs.io.

Table of Contents

Background

Imbalanced Learning (IL) is an important problem that widely exists in data mining applications. Typical IL methods utilize intuitive class-wise resampling or reweighting to directly balance the training set. However, some recent research efforts in specific domains show that class-imbalanced learning can be achieved without class-wise manipulation. This prompts us to think about the relationship between the two different IL strategies and the nature of the class imbalance. Fundamentally, they correspond to two essential imbalances that exist in IL: the difference in quantity between examples from different classes as well as between easy and hard examples within a single class, i.e., inter-class and intra-class imbalance.

image

Existing works fail to explicitly take both imbalances into account and thus suffer from suboptimal performance. In light of this, we present Duple-Balanced Ensemble, namely DUBE, a versatile ensemble learning framework. Unlike prevailing methods, DUBE directly performs inter-class and intra-class balancing without relying on heavy distance-based computation, which allows it to achieve competitive performance while being computationally efficient.

image

Install

Our DuBE implementation requires following dependencies:

You can install DuBE by clone this repository:

git clone https://github.com/ICDE2022Sub/duplebalance.git
cd duplebalance
pip install .

Usage

For more detailed usage example, please see Examples.

A minimal working example:

# load dataset & prepare environment
from duplebalance import DupleBalanceClassifier
from sklearn.datasets import make_classification

X, y = make_classification(n_samples=1000, n_classes=3,
                           n_informative=4, weights=[0.2, 0.3, 0.5],
                           random_state=0)

# ensemble training
clf = DupleBalanceClassifier(
    n_estimators=10,
    random_state=42,
    ).fit(X_train, y_train)

# predict
y_pred_test = clf.predict_proba(X_test)

Documentation

For more detailed API references, please see API reference.

Our DupleBalance implementation can be used much in the same way as the ensemble classifiers in sklearn.ensemble. The DupleBalanceClassifier class inherits from the sklearn.ensemble.BaseEnsemble base class.

Main parameters are listed below:

Parameters Description
base_estimator object, optional (default=sklearn.tree.DecisionTreeClassifier())
The base estimator to fit on self-paced under-sampled subsets of the dataset. NO need to support sample weighting. Built-in fit(), predict(), predict_proba() methods are required.
n_estimators int, optional (default=10)
The number of base estimators in the ensemble.
resampling_target {'hybrid', 'under', 'over', 'raw'}, default="hybrid"
Determine the number of instances to be sampled from each class (inter-class balancing).
- If under, perform under-sampling. The class containing the fewest samples is considered the minority class :math:c_{min}. All other classes are then under-sampled until they are of the same size as :math:c_{min}.
- If over, perform over-sampling. The class containing the argest number of samples is considered the majority class :math:c_{maj}. All other classes are then over-sampled until they are of the same size as :math:c_{maj}.
- If hybrid, perform hybrid-sampling. All classes are under/over-sampled to the average number of instances from each class.
- If raw, keep the original size of all classes when resampling.
resampling_strategy {'hem', 'shem', 'uniform'}, default="shem")
Decide how to assign resampling probabilities to instances during ensemble training (intra-class balancing).
- If hem, perform hard-example mining. Assign probability with respect to instance's latest prediction error.
- If shem, perform soft hard-example mining. Assign probability by inversing the classification error density.
- If uniform, assign uniform probability, i.e., random resampling.
perturb_alpha float or str, optional (default='auto')
The multiplier of the calibrated Gaussian noise that was add on the sampled data. It determines the intensity of the perturbation-based augmentation. If 'auto', perturb_alpha will be automatically tuned using a subset of the given training data.
k_bins int, optional (default=5)
The number of error bins that were used to approximate error distribution. It is recommended to set it to 5. One can try a larger value when the smallest class in the data set has a sufficient number (say, > 1000) of samples.
estimator_params list of str, optional (default=tuple())
The list of attributes to use as parameters when instantiating a new base estimator. If none are given, default parameters are used.
n_jobs int, optional (default=None)
The number of jobs to run in parallel for :meth:predict. None means 1 unless in a :obj:joblib.parallel_backend context. -1 means using all processors. See :term:Glossary <n_jobs> for more details.
random_state int / RandomState instance / None, optional (default=None)
If integer, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by numpy.random.
verbose int, optional (default=0)
Controls the verbosity when fitting and predicting.
Library for 8-bit optimizers and quantization routines.

bitsandbytes Bitsandbytes is a lightweight wrapper around CUDA custom functions, in particular 8-bit optimizers and quantization functions. Paper -- V

Facebook Research 687 Jan 04, 2023
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022
WSDM‘2022: Knowledge Enhanced Sports Game Summarization

Knowledge Enhanced Sports Game Summarization Cooming Soon! :) Data will be released after approval process. Code will be published once the author of

Jiaan Wang 14 Jul 13, 2022
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022
Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

MediumVC MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utter

谷下雨 47 Dec 25, 2022
Implementation of algorithms for continuous control (DDPG and NAF).

DEPRECATION This repository is deprecated and is no longer maintaned. Please see a more recent implementation of RL for continuous control at jax-sac.

Ilya Kostrikov 288 Dec 31, 2022
PyTorch implementation of Wide Residual Networks with 1-bit weights by McDonnell (ICLR 2018)

1-bit Wide ResNet PyTorch implementation of training 1-bit Wide ResNets from this paper: Training wide residual networks for deployment using a single

Sergey Zagoruyko 122 Dec 07, 2022
Auditing Black-Box Prediction Models for Data Minimization Compliance

Data-Minimization-Auditor An auditing tool for model-instability based data minimization that is introduced in "Auditing Black-Box Prediction Models f

Bashir Rastegarpanah 2 Mar 24, 2022
Fast and accurate optimisation for registration with little learningconvexadam

convexAdam Learn2Reg 2021 Submission Fast and accurate optimisation for registration with little learning Excellent results on Learn2Reg 2021 challeng

17 Dec 06, 2022
Reinforcement Learning for Automated Trading

Reinforcement Learning for Automated Trading This thesis has been realized for the obtention of the Master's in Mathematical Engineering at the Polite

Pierpaolo Necchi 80 Jun 19, 2022
Sequential model-based optimization with a `scipy.optimize` interface

Scikit-Optimize Scikit-Optimize, or skopt, is a simple and efficient library to minimize (very) expensive and noisy black-box functions. It implements

Scikit-Optimize 2.5k Jan 04, 2023
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
MTCNN face detection implementation for TensorFlow, as a PIP package.

MTCNN Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN

Iván de Paz Centeno 1.9k Dec 30, 2022
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022