Code, Models and Datasets for OpenViDial Dataset

Overview

OpenViDial

This repo contains downloading instructions for the OpenViDial dataset in 《OpenViDial: A Large-Scale, Open-Domain Dialogue Dataset with Visual Contexts》 along with the code to reproduce results in the paper (See Section Baselines).

Introduction

When humans converse, what a speaker will say next significantly depends on what he sees. OpenViDial is a largescale multi-module dialogue dataset for this purpose. The dialogue turns and visual contexts are extracted from movies and TV series, where each dialogue turn is paired with the corresponding visual context in which it takes place. OpenViDial contains a total number of 1.1 million dialogue turns, and thus 1.1 million visual contexts stored in images.

The following are two short conversations where visual contexts are crucial.

Detailed statistics for OpenViDial

Attribute value
Number of turns 1.1M
Number of images 1.1M
Vocab size before BPE 70K
Vocab size after BPE 30K
Average length of each episode 14
Average length of each turn 7.6

Download the Dataset

The main folder origin_dir contains training/valid/test sets, each of which is made up by the following files:

├──origin_dir
      └── train.dialogue.jsonl // each line is an episode of dialogue, which a list of IDs.    
      └── train.origin.txt // each line corresponds to a dialogue text utterence, with the ID being its line number (staring with 0).
      └── train_images // containing images (visual contexts) in which the text utterence take place, with ID being the image filename (0,1,2, etc)
            └── 0.jpg
            └── 1.jpg
            └── ...
      └── valid.* (i.e., valid.dialogue.jsonl, valid.origin.txt, valid_images)
      └── test.*  (i.e., test.dialogue.jsonl, test.origin.txt, test_images)

If you'd like to take a glance at the a sample of the dataset instead of downloading the full dataset, we provide a data sample here

Data download:

  1. Download [train|valid|test].origin.txt and [train|valid|test].dialogue.jsonl here
  2. Download test_images (~ 20G) here
  3. Download valid_images (~ 20G) here
  4. Download train_images: Since train_images is too big (~ 170G), we split it to 11 zip files (each of which is 17G). Download seperate files zip_train here. Then download and run cat.sh here to include all files in the same directory.
  5. Move all files to origin_dir.

Models

We proposed three models for this dataset. Please refer to the paper for details:

  • Model #1 - NoVisual: use only dialog texts without visual information
  • Model #2 - CoarseVisual: use texts and a pretrained ResNet50 on ImageNet to compute 1000-d feature from each picture
  • Model #3 - FineVisual: use texts and a pretrained Faster R-CNN on Genome to compute 2048-d * K objects features from each picture

Faster R-CNN is an object detection framework. The detection sample and attention over objects during text decoding is shown below.

Requirements

  • python >= 3.6
  • pip install -r requirements.txt

Preprocess directory structure

preprocessed_data_dir is a directory that contains all the preprocessed files (text, image feature mmap, offsets, etc.) generated from origin_data_dir and we use them in training models. The directory structure is shown below.

Note: every train* file or directory should have a 'valid' and a 'test' counterpart, we ignore them below for simplicity.

├──preprocessed_data_dir
      └── train.features.mmap  // numpy mmap array file of shape [num_sents, 1000], each row is a 1000-d ResNet-50 feature
      └── train.objects.mmap  // numpy mmap array file of shape [num_sents, 20, 2048],  faster-rcnn object feature file, each row contain 20 objects feature, which is 2048-d
      └── train.objects_mask.mmap  // numpy mmap array file of shape [num_sents, 20],  faster-rcnn mask file, each row contain 20 objects mask, 1 for valid, 0 for mask
      └── train.offsets.npy  // numpy array file of shape [num_episodes], each item is the offsets of one episode
      └── train.sent_num.npy // numpy array file of shape [num_episodes], each item is the sentence number of one episode

Preprocess text data

We use Moses Tokenizer to tokenize texts and generate offsets arrays: bash ./scripts/preprocess_video_data.sh and followed with byte-pair-encoding and fairseq-preprocess binarization: bash ./scripts/preprocess_text_data.sh

Note: You need to change DATA_DIR, ORIGIN_DIR, OUTPUT_DIR to your own path

Prepare pre-computed CNN features and Faster-RCNN features

Download CNN-pooling features(Used for Model #2 - CoarseVisual)

Preprocessed ResNet50 features (*.features.mmap) (~4G) can be downloaded from here and move them under preprocessed_data_dir/

Download Faster R-CNN features(Used for Model #3 - FineVisual)

Preprocessed Faster R-CNN objects features (*objects.mmap, *objects_mask.mmap) (~160G) can be downloaded from here then move them under preprocessed_data_dir/

Since file train.objects.mmap is too large(100G+), we splitted it to many small pieces like train.objects.mmap.split*, and you need another step to merge all those files together: cat * train.objects.mmap.split* >train.objects.mmap

(Optional) Extract features on your own

If you want to extract some feature on your own, or you'd like to know details of extracting visual features, see video_dialogue_model/extract_features/extract_features.md

Train and Evaluate Model #1 - NoVisual

bash scripts/reproduce_baselines/text_only.sh will train and evaluate NoVisual, Remember to change MODEL_DIR and DATA_DIR for your setup

Train and Evaluate Model #2 - CoarseVisual

bash scripts/reproduce_baselines/text_and_img_feature.sh will train and evaluate CoarseVisual. Remember to change MODEL_DIR and DATA_DIR for your setup

Train and Evaluate Model #3 - FineVisual

bash scripts/reproduce_baselines/text_and_img_objects.sh will train and evaluate FineVisual, Remember to change MODEL_DIR and DATA_DIR for your setup

Other Statistics

  • get length/diversity/stopwords% statistics of system output: train/stats.py

Model benchmark

Model BLEU-1 BLEU-2 BLEU-4 Stopword% Dis-1 Dis-2 Dis-3 Dis-4
1-NV 14.01 3.98 1.07 58.1% 0.0091 0.0355 0.0682 0.1018
2-CV 14.58 4.35 1.14 54.2% 0.0108 0.0448 0.0915 0.1465
3-FV 15.61 4.71 1.22 52.9% 0.0118 0.0502 0.1082 0.1778
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Creating easier access to the Moroccan stock market data What is StocksMA ? StocksMA is a package to facilitate access to financial and economic data

Salah Eddine LABIAD 28 Jan 04, 2023
PointPillars inference with TensorRT

A project demonstrating how to use CUDA-PointPillars to deal with cloud points data from lidar.

NVIDIA AI IOT 315 Dec 31, 2022
An unreferenced image captioning metric (ACL-21)

UMIC This repository provides an unferenced image captioning metric from our ACL 2021 paper UMIC: An Unreferenced Metric for Image Captioning via Cont

hwanheelee 14 Nov 20, 2022
TGS Salt Identification Challenge

TGS Salt Identification Challenge This is an open solution to the TGS Salt Identification Challenge. Note Unfortunately, we can no longer provide supp

neptune.ai 123 Nov 04, 2022
Multilingual Image Captioning

Multilingual Image Captioning Authors: Bhavitvya Malik, Gunjan Chhablani Demo Link: https://huggingface.co/spaces/flax-community/multilingual-image-ca

Gunjan Chhablani 32 Nov 25, 2022
Pytorch ImageNet1k Loader with Bounding Boxes.

ImageNet 1K Bounding Boxes For some experiments, you might wanna pass only the background of imagenet images vs passing only the foreground. Here, I'v

Amin Ghiasi 11 Oct 15, 2022
Pytorch implementation of Hinton's Dynamic Routing Between Capsules

pytorch-capsule A Pytorch implementation of Hinton's "Dynamic Routing Between Capsules". https://arxiv.org/pdf/1710.09829.pdf Thanks to @naturomics fo

Tim Omernick 625 Oct 27, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
Code for "Diffusion is All You Need for Learning on Surfaces"

Source code for "Diffusion is All You Need for Learning on Surfaces", by Nicholas Sharp Souhaib Attaiki Keenan Crane Maks Ovsjanikov NOTE: the linked

Nick Sharp 247 Dec 28, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Figure: Shape-Accurate 3D-Aware Image Synthesis. A Shading-Guid

Xingang Pan 115 Dec 18, 2022
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Thank you for you

Weirui Ye 671 Jan 03, 2023
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

SIGIR2021-EGLN The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization" Neural graph based Col

15 Dec 27, 2022
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 25, 2022
Image-to-image translation with conditional adversarial nets

pix2pix Project | Arxiv | PyTorch Torch implementation for learning a mapping from input images to output images, for example: Image-to-Image Translat

Phillip Isola 9.3k Jan 08, 2023
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022