Code, Models and Datasets for OpenViDial Dataset

Overview

OpenViDial

This repo contains downloading instructions for the OpenViDial dataset in 《OpenViDial: A Large-Scale, Open-Domain Dialogue Dataset with Visual Contexts》 along with the code to reproduce results in the paper (See Section Baselines).

Introduction

When humans converse, what a speaker will say next significantly depends on what he sees. OpenViDial is a largescale multi-module dialogue dataset for this purpose. The dialogue turns and visual contexts are extracted from movies and TV series, where each dialogue turn is paired with the corresponding visual context in which it takes place. OpenViDial contains a total number of 1.1 million dialogue turns, and thus 1.1 million visual contexts stored in images.

The following are two short conversations where visual contexts are crucial.

Detailed statistics for OpenViDial

Attribute value
Number of turns 1.1M
Number of images 1.1M
Vocab size before BPE 70K
Vocab size after BPE 30K
Average length of each episode 14
Average length of each turn 7.6

Download the Dataset

The main folder origin_dir contains training/valid/test sets, each of which is made up by the following files:

├──origin_dir
      └── train.dialogue.jsonl // each line is an episode of dialogue, which a list of IDs.    
      └── train.origin.txt // each line corresponds to a dialogue text utterence, with the ID being its line number (staring with 0).
      └── train_images // containing images (visual contexts) in which the text utterence take place, with ID being the image filename (0,1,2, etc)
            └── 0.jpg
            └── 1.jpg
            └── ...
      └── valid.* (i.e., valid.dialogue.jsonl, valid.origin.txt, valid_images)
      └── test.*  (i.e., test.dialogue.jsonl, test.origin.txt, test_images)

If you'd like to take a glance at the a sample of the dataset instead of downloading the full dataset, we provide a data sample here

Data download:

  1. Download [train|valid|test].origin.txt and [train|valid|test].dialogue.jsonl here
  2. Download test_images (~ 20G) here
  3. Download valid_images (~ 20G) here
  4. Download train_images: Since train_images is too big (~ 170G), we split it to 11 zip files (each of which is 17G). Download seperate files zip_train here. Then download and run cat.sh here to include all files in the same directory.
  5. Move all files to origin_dir.

Models

We proposed three models for this dataset. Please refer to the paper for details:

  • Model #1 - NoVisual: use only dialog texts without visual information
  • Model #2 - CoarseVisual: use texts and a pretrained ResNet50 on ImageNet to compute 1000-d feature from each picture
  • Model #3 - FineVisual: use texts and a pretrained Faster R-CNN on Genome to compute 2048-d * K objects features from each picture

Faster R-CNN is an object detection framework. The detection sample and attention over objects during text decoding is shown below.

Requirements

  • python >= 3.6
  • pip install -r requirements.txt

Preprocess directory structure

preprocessed_data_dir is a directory that contains all the preprocessed files (text, image feature mmap, offsets, etc.) generated from origin_data_dir and we use them in training models. The directory structure is shown below.

Note: every train* file or directory should have a 'valid' and a 'test' counterpart, we ignore them below for simplicity.

├──preprocessed_data_dir
      └── train.features.mmap  // numpy mmap array file of shape [num_sents, 1000], each row is a 1000-d ResNet-50 feature
      └── train.objects.mmap  // numpy mmap array file of shape [num_sents, 20, 2048],  faster-rcnn object feature file, each row contain 20 objects feature, which is 2048-d
      └── train.objects_mask.mmap  // numpy mmap array file of shape [num_sents, 20],  faster-rcnn mask file, each row contain 20 objects mask, 1 for valid, 0 for mask
      └── train.offsets.npy  // numpy array file of shape [num_episodes], each item is the offsets of one episode
      └── train.sent_num.npy // numpy array file of shape [num_episodes], each item is the sentence number of one episode

Preprocess text data

We use Moses Tokenizer to tokenize texts and generate offsets arrays: bash ./scripts/preprocess_video_data.sh and followed with byte-pair-encoding and fairseq-preprocess binarization: bash ./scripts/preprocess_text_data.sh

Note: You need to change DATA_DIR, ORIGIN_DIR, OUTPUT_DIR to your own path

Prepare pre-computed CNN features and Faster-RCNN features

Download CNN-pooling features(Used for Model #2 - CoarseVisual)

Preprocessed ResNet50 features (*.features.mmap) (~4G) can be downloaded from here and move them under preprocessed_data_dir/

Download Faster R-CNN features(Used for Model #3 - FineVisual)

Preprocessed Faster R-CNN objects features (*objects.mmap, *objects_mask.mmap) (~160G) can be downloaded from here then move them under preprocessed_data_dir/

Since file train.objects.mmap is too large(100G+), we splitted it to many small pieces like train.objects.mmap.split*, and you need another step to merge all those files together: cat * train.objects.mmap.split* >train.objects.mmap

(Optional) Extract features on your own

If you want to extract some feature on your own, or you'd like to know details of extracting visual features, see video_dialogue_model/extract_features/extract_features.md

Train and Evaluate Model #1 - NoVisual

bash scripts/reproduce_baselines/text_only.sh will train and evaluate NoVisual, Remember to change MODEL_DIR and DATA_DIR for your setup

Train and Evaluate Model #2 - CoarseVisual

bash scripts/reproduce_baselines/text_and_img_feature.sh will train and evaluate CoarseVisual. Remember to change MODEL_DIR and DATA_DIR for your setup

Train and Evaluate Model #3 - FineVisual

bash scripts/reproduce_baselines/text_and_img_objects.sh will train and evaluate FineVisual, Remember to change MODEL_DIR and DATA_DIR for your setup

Other Statistics

  • get length/diversity/stopwords% statistics of system output: train/stats.py

Model benchmark

Model BLEU-1 BLEU-2 BLEU-4 Stopword% Dis-1 Dis-2 Dis-3 Dis-4
1-NV 14.01 3.98 1.07 58.1% 0.0091 0.0355 0.0682 0.1018
2-CV 14.58 4.35 1.14 54.2% 0.0108 0.0448 0.0915 0.1465
3-FV 15.61 4.71 1.22 52.9% 0.0118 0.0502 0.1082 0.1778
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm.

This repository is the official implementation of the Hybrid Self-Attention NEAT algorithm. It contains the code to reproduce the results presented in the original paper: https://arxiv.org/abs/2112.0

Saman Khamesian 6 Dec 13, 2022
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
The Pytorch code of "Joint Distribution Matters: Deep Brownian Distance Covariance for Few-Shot Classification", CVPR 2022 (Oral).

DeepBDC for few-shot learning        Introduction In this repo, we provide the implementation of the following paper: "Joint Distribution Matters: Dee

FeiLong 116 Dec 19, 2022
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022
[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

129 Jan 04, 2023
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies

Achilles Rasquinha 1.8k Jan 05, 2023
Confident Semantic Ranking Loss for Part Parsing

Confident Semantic Ranking Loss for Part Parsing

Jiachen Xu 5 Oct 22, 2022
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022
Tidy interface to polars

tidypolars tidypolars is a data frame library built on top of the blazingly fast polars library that gives access to methods and functions familiar to

Mark Fairbanks 144 Jan 08, 2023