Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

Related tags

Deep LearningxTune
Overview

xTune

Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

Environment

DockerFile: dancingsoul/pytorch:xTune

Install the fine-tuning code: pip install --user .

Data & Model Preparation

XTREME Datasets

  1. Create a download folder with mkdir -p download in the root of this project.
  2. manually download panx_dataset (for NER) [here][2], (note that it will download as AmazonPhotos.zip) to the download directory.
  3. run the following command to download the remaining datasets: bash scripts/download_data.sh The code of downloading dataset from XTREME is from [xtreme offical repo][1].

Note that we keep the labels in test set for easier evaluation. To prevent accidental evaluation on the test sets while running experiments, the code of [xtreme offical repo][1] removes labels of the test data during pre-processing and changes the order of the test sentences for cross-lingual sentence retrieval. Replace csv.writer(fout, delimiter='\t') with csv.writer(fout, delimiter='\t', quoting=csv.QUOTE_NONE, quotechar='') in utils_process.py if using XTREME official repo.

Translations

XTREME provides translations for SQuAD v1.1 (only train and dev), MLQA, PAWS-X, TyDiQA-GoldP, XNLI, and XQuAD, which can be downloaded from [here][3]. The xtreme_translations folder should be moved to the download directory.

The target language translations for panx and udpos are obtained with Google Translate, since they are not provided. Our processed version can be downloaded from [here][4]. It should be merged with the above xtreme_translations folder.

Bi-lingual dictionaries

We obtain the bi-lingual dictionaries from the [MUSE][6] repo. For convenience, you can download them from [here][7] and move it to the download directory, i.e., ./download/dicts.

Models

XLM-Roberta is supported. We utilize the [huggingface][5] format, which can be downloaded with bash scripts/download_model.sh.

Fine-tuning Usage

Our default settings were using Nvidia V100-32GB GPU cards. If there were out-of-memory errors, you can reduce per_gpu_train_batch_size while increasing gradient_accumulation_steps, or use multi-GPU training.

xTune consists of a two-stage training process.

  • Stage 1: fine-tuning with example consistency on the English training set.
  • Stage 2: fine-tuning with example consistency on the augmented training set and regularize model consistency with the model from Stage 1.

It's recommended to use both Stage 1 and Stage 2 for token-level tasks, such as sequential labeling, and question answering. For text classification, you can only use Stage 1 if the computation budget was limited.

bash ./scripts/train.sh [setting] [dataset] [model] [stage] [gpu] [data_dir] [output_dir]

where the options are described as follows:

  • [setting]: translate-train-all (using input translation for the languages other than English) or cross-lingual-transfer (only using English for zero-shot cross-lingual transfer)
  • [dataset]: dataset names in XTREME, i.e., xnli, panx, pawsx, udpos, mlqa, tydiqa, xquad
  • [model]: xlm-roberta-base, xlm-roberta-large
  • [stage]: 1 (first stage), 2 (second stage)
  • [gpu]: used to set environment variable CUDA_VISIBLE_DEVICES
  • [data_dir]: folder of training data
  • [output_dir]: folder of fine-tuning output

Examples: XTREME Tasks

XNLI fine-tuning on English training set and translated training sets (translate-train-all)

# run stage 1 of xTune
bash ./scripts/train.sh translate-train-all xnli xlm-roberta-base 1
# run stage 2 of xTune (optional)
bash ./scripts/train.sh translate-train-all xnli xlm-roberta-base 2

XNLI fine-tuning on English training set (cross-lingual-transfer)

# run stage 1 of xTune
bash ./scripts/train.sh cross-lingual-transfer xnli xlm-roberta-base 1
# run stage 2 of xTune (optional)
bash ./scripts/train.sh cross-lingual-transfer xnli xlm-roberta-base 2

Paper

Please cite our paper \cite{bo2021xtune} if you found the resources in the repository useful.

@inproceedings{bo2021xtune,
author = {Bo Zheng, Li Dong, Shaohan Huang, Wenhui Wang, Zewen Chi, Saksham Singhal, Wanxiang Che, Ting Liu, Xia Song, Furu Wei},
booktitle = {Proceedings of ACL 2021},
title = {{Consistency Regularization for Cross-Lingual Fine-Tuning}},
year = {2021}
}

Reference

  1. https://github.com/google-research/xtreme
  2. https://www.amazon.com/clouddrive/share/d3KGCRCIYwhKJF0H3eWA26hjg2ZCRhjpEQtDL70FSBN?_encoding=UTF8&%2AVersion%2A=1&%2Aentries%2A=0&mgh=1
  3. https://console.cloud.google.com/storage/browser/xtreme_translations
  4. https://drive.google.com/drive/folders/1Rdbc0Us_4I5MpRCwLASxBwqSW8_dlF87?usp=sharing
  5. https://github.com/huggingface/transformers/
  6. https://github.com/facebookresearch/MUSE
  7. https://drive.google.com/drive/folders/1k9rQinwUXicglA5oyzo9xtgqiuUVDkjT?usp=sharing
Owner
Bo Zheng
Bo Zheng
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
Model Zoo of BDD100K Dataset

Model Zoo of BDD100K Dataset

ETH VIS Group 200 Dec 27, 2022
A general, feasible, and extensible framework for classification tasks.

Pytorch Classification A general, feasible and extensible framework for 2D image classification. Features Easy to configure (model, hyperparameters) T

Eugene 26 Nov 22, 2022
"3D Human Texture Estimation from a Single Image with Transformers", ICCV 2021

Texformer: 3D Human Texture Estimation from a Single Image with Transformers This is the official implementation of "3D Human Texture Estimation from

XiangyuXu 193 Dec 05, 2022
A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population

DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials

ZJUNLP 1.6k Jan 05, 2023
10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Under refactoring 10th place solution for Google Smartphone Decimeter Challenge at kaggle. Google Smartphone Decimeter Challenge Global Navigation Sat

12 Oct 25, 2022
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization This repository contains the evaluation code and alternative pseudo ground truth

Torsten Sattler 36 Dec 22, 2022
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month r

56 Dec 12, 2022
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Chen Guo 58 Dec 24, 2022
Unofficial PyTorch implementation of Guided Dropout

Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm

2 Jan 07, 2022
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
Multivariate Time Series Transformer, public version

Multivariate Time Series Transformer Framework This code corresponds to the paper: George Zerveas et al. A Transformer-based Framework for Multivariat

363 Jan 03, 2023
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Hah Min Lew 1 Feb 08, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023