Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Overview

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022)

Paper: https://arxiv.org/abs/2203.04042 (Arxiv version)

This code includes the training and testing procedures of our network on our Mono-colored raw Paired (MCR) dataset and SID dataset's Sony part.

Abstract: Low-light image enhancement - a pervasive but challenging problem, plays a central role in enhancing the visibility of an image captured in a poor illumination environment. Due to the fact that not all photons can pass the Bayer-Filter on the sensor of the color camera, in this work, we first present a De-Bayer-Filter simulator based on deep neural networks to generate a monochrome raw image from the colored raw image. Next, a fully convolutional network is proposed to achieve the low-light image enhancement by fusing colored raw data with synthesized monochrome raw data. Channel-wise attention is also introduced to the fusion process to establish a complementary interaction between features from colored and monochrome raw images. To train the convolutional networks, we propose a dataset with monochrome and color raw pairs named Mono-Colored Raw paired dataset (MCR) collected by using a monochrome camera without Bayer-Filter and a color camera with Bayer-Filter. The proposed pipeline take advantages of the fusion of the virtual monochrome and the color raw images and our extensive experiments indicate that significant improvement can be achieved by leveraging raw sensor data and data-driven learning.

pipeline

Video demos:

videos

Requirments

This is the Pytorch implementation of our work. The next requirments and some other frequently-used Library will be needed.

  1. Python >= 3.7
  2. Pytorch >= 1.7.1
  3. scikit-image 0.18.1
  4. imageio 2.9.0
  5. rawpy 0.17.0

Dataset

dataset

We propose the MCR [Google Drive, Baidu Netdisk (Extraction code: 22cv)], a dataset of colored raw and monochrome raw image pairs, captured with the same exposure setting. Each image has a resolution of 1280×1024.

The zip file contain 3 parts:

  • Mono_Colored_RAW_Paired_DATASET
    • RGB_GT (498 images)
    • Mono_GT (498 images)
    • Color_RAW_Input (498 × 8 images)

Totally 498 different scenes, each scene has 1 corresponding RGB and Monochrome ground truth and 8 different exposure color Raw inputs.

We assemble the color camera and the monochrome camera up and down, setting the same exposure times and gain in the same scene.

And we choose the monochrome GT and RGB GT under the longest exposure time.

The file name contains the image information. Take the image name:"C00001_48mp_0x8_0x1fff.tif" as an example.

"C" means it is color raw image;

"00001" is the image number;

"48mp" is the master clock frequency 48 MHz;

"0x8" is the hex number of global gain;

"0x1fff" indicate the shutter width of the camera which can calculate the exposure time.

For visual convenience, we convert '.raw' files to '.tif' files which have the same 'RGGB' Bayer-filter pattern as the raw files.

The relationship between shutter width and the exposure time is shown in the table below.

teaser

The first 2 rows represent the exposure time settings in the indoor scenes which image number is between 1 and 499, the last 2 rows represent outdoor scenes' exposure time settings.

Alignment

We propose our alignment code for color and monochrome images taken by 2 cameras under the same scene.

Alignment/raw folder contain samples of color and monochrome raw images in one scene.

Firstly,in convert_RAW.py, we reshape the flatten '.raw' files into '1280×1024' and save as '.tif' files, and then we use the 'exiftool.exe' to add the head info 'pbpx_exft_args.txt' and save the images as '.dng' and '.jpg' files.

Secondly, in alignment.py, we choose two '.jpg' images from color and monochrome, and use opencv to calculate the homograph to do the alignment for monochrome images.

Training & Testing

For fully loading our dataset, 36G RAM are needed.

The 'random_path_list' contain the split train&test path lists in our dataset.

We split 3984 pairs of our dataset into train set: 3600 pairs and test set: 384 pairs

We train and test our MCR dataset with train.py and test.py, and we also train our network on SID dataset's Sony part with train_on_SID.py and test_on_SID.py.

The pre-trained models on both datasets can be found at MCR_pretrained_model and SID_pretrained_model

Citation

If you find this project useful in your research, please consider citing:

@inproceedings{Dong2022Abandoning,
	title={Abandoning the Bayer-Filter to See in the Dark},
	author={Dong, Xingbo and Xu, Wanyan and Miao, Zhihui and Ma, Lan and Zhang, Chao and Yang, Jiewen and Jin, Zhe and Teoh, Andrew Beng Jin and Shen, Jiajun},
	booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
	year={2022}
}

License

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Pytorch implementation for the paper: Contrastive Learning for Cold-start Recommendation

Contrastive Learning for Cold-start Recommendation This is our Pytorch implementation for the paper: Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan L

45 Dec 13, 2022
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
This is the official pytorch implementation of AutoDebias, an automatic debiasing method for recommendation.

AutoDebias This is the official pytorch implementation of AutoDebias, a debiasing method for recommendation system. AutoDebias is proposed in the pape

Dong Hande 77 Nov 25, 2022
Models, datasets and tools for Facial keypoints detection

Template for Data Science Project This repo aims to give a robust starting point to any Data Science related project. It contains readymade tools setu

girafe.ai 1 Feb 11, 2022
⚓ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo · Documentation · Medium article 🔍 Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022
VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries

VACA Code repository for the paper "VACA: Designing Variational Graph Autoencoders for Interventional and Counterfactual Queries (arXiv)". The impleme

Pablo Sánchez-Martín 16 Oct 10, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Payphone 8 Nov 21, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
Language models are open knowledge graphs ( non official implementation )

language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag

theblackcat102 132 Dec 18, 2022
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
Converts given image (png, jpg, etc) to amogus gif.

Image to Amogus Converter Converts given image (.png, .jpg, etc) to an amogus gif! Usage Place image in the /target/ folder (or anywhere realistically

Hank Magan 1 Nov 24, 2021
A Re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"

What is This This is a simple re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"(1). Only Sections

102 Dec 14, 2022
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
Privacy-Preserving Machine Learning (PPML) Tutorial Presented at PyConDE 2022

PPML: Machine Learning on Data you cannot see Repository for the tutorial on Privacy-Preserving Machine Learning (PPML) presented at PyConDE 2022 Abst

Valerio Maggio 10 Aug 16, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
Campsite Reservation Finder

yellowstone-camping UPDATE: yellowstone-camping is being expanded and renamed to camply. The updated tool now interfaces with the Recreation.gov API a

Justin Flannery 233 Jan 08, 2023