Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Overview

Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Abstract: Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution. Recently, several proposed debiasing methods are shown to be very effective in improving out-of-distribution performance. However, their improvements come at the expense of performance drop when models are evaluated on the in-distribution data, which contain examples with higher diversity. This seemingly inevitable trade-off may not tell us much about the changes in the reasoning and understanding capabilities of the resulting models on broader types of examples beyond the small subset represented in the out-of-distribution data. In this paper, we address this trade-off by introducing a novel debiasing method, called confidence regularization, which discourage models from exploiting biases while enabling them to receive enough incentive to learn from all the training examples. We evaluate our method on three NLU tasks and show that, in contrast to its predecessors, it improves the performance on out-of-distribution datasets (e.g., 7pp gain on HANS dataset) while maintaining the original in-distribution accuracy.

The repository contains the code to reproduce our work in debiasing NLU models without in-distribution degradation. We provide 2 runs of experiment that are shown in our paper:

  1. Debias MNLI model from syntactic bias and evaluate on HANS as the out-of-distribution data.
  2. Debias MNLI model from hypothesis-only bias and evaluate on MNLI-hard sets as the out-of-distribution data.

Requirements

The code requires python >= 3.6 and pytorch >= 1.1.0.

Additional required dependencies can be found in requirements.txt. Install all requirements by running:

pip install -r requirements.txt

Data

Our experiments use MNLI dataset version provided by GLUE benchmark. Download the file from here, and unzip under the directory ./dataset Additionally download the following files here for evaluating on hard/easy splits of both MNLI dev and test sets. The dataset directory should be structured as the following:

└── dataset 
    └── MNLI
        ├── train.tsv
        ├── dev_matched.tsv
        ├── dev_mismatched.tsv
        ├── dev_mismatched.tsv
        ├── dev_matched_easy.tsv
        ├── dev_matched_hard.tsv
        ├── dev_mismatched_easy.tsv
        ├── dev_mismatched_hard.tsv
        ├── multinli_hard
        │   ├── multinli_0.9_test_matched_unlabeled_hard.jsonl
        │   └── multinli_0.9_test_mismatched_unlabeled_hard.jsonl
        ├── multinli_test
        │   ├── multinli_0.9_test_matched_unlabeled.jsonl
        │   └── multinli_0.9_test_mismatched_unlabeled.jsonl
        └── original

Running the experiments

For each evaluation setting, use the --mode and --which_bias arguments to set the appropriate loss function and the type of bias to mitigate (e.g, hans, hypo).

To reproduce our result on MNLI ⮕ HANS, run the following:

cd src/
CUDA_VISIBLE_DEVICES=6 python train_distill_bert.py \
    --output_dir ../checkpoints/hans/bert_confreg_lr5_epoch3_seed444 \
    --do_train --do_eval --mode smoothed_distill \
    --seed 444 --which_bias hans

For the MNLI ⮕ hard splits, run the following:

cd src/
CUDA_VISIBLE_DEVICES=10 python train_distill_bert.py \
    --output_dir ../checkpoints/hypo/bert_confreg_lr5_epoch3_seed111 \
    --do_train --do_eval --mode smoothed_distill \
    --seed 111 --which_bias hypo

Expected results

Results on the MNLI ⮕ HANS setting:

Mode Seed MNLI-m MNLI-mm HANS avg.
None 111 84.57 84.72 62.04
conf-reg 111 84.17 85.02 69.62

Results on the MNLI ⮕ Hard-splits setting:

Mode Seed MNLI-m MNLI-mm MNLI-m hard MNLI-mm hard
None 111 84.62 84.71 76.07 76.75
conf-reg 111 85.01 84.87 78.02 78.89

Contact

Contact person: Ajie Utama, [email protected]

https://www.ukp.tu-darmstadt.de/

Please reach out to us for further questions or if you encounter any issue. You can cite this work by the following:

@InProceedings{UtamaDebias2020,
  author    = {Utama, P. Ajie and Moosavi, Nafise Sadat and Gurevych, Iryna},
  title     = {Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance},
  booktitle = {Proceedings of the 58th Conference of the Association for Computational Linguistics},
  month     = jul,
  year      = {2020},
  publisher = {Association for Computational Linguistics}
}

Acknowledgement

The code in this repository is build on the implementation of debiasing method by Clark et al. The original version can be found here

Owner
Ubiquitous Knowledge Processing Lab
Ubiquitous Knowledge Processing Lab
Predicting a person's gender based on their weight and height

Logistic Regression Advanced Case Study Gender Classification: Predicting a person's gender based on their weight and height 1. Introduction We turn o

1 Feb 01, 2022
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
Authors implementation of LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant self-at

35 Oct 18, 2022
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 410 Jan 03, 2023
A robotic arm that mimics hand movement through MediaPipe tracking.

La-Z-Arm A robotic arm that mimics hand movement through MediaPipe tracking. Hardware NVidia Jetson Nano Sparkfun Pi Servo Shield Micro Servos Webcam

Alfred 1 Jun 05, 2022
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
A Human-in-the-Loop workflow for creating HD images from text

A Human-in-the-Loop? workflow for creating HD images from text DALL·E Flow is an interactive workflow for generating high-definition images from text

Jina AI 2.5k Jan 02, 2023
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
🥇Samsung AI Challenge 2021 1등 솔루션입니다🥇

MoT - Molecular Transformer Large-scale Pretraining for Molecular Property Prediction Samsung AI Challenge for Scientific Discovery This repository is

Jungwoo Park 44 Dec 03, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias

tofis 24 Oct 08, 2022
This repository contains tutorials for the py4DSTEM Python package

py4DSTEM Tutorials This repository contains tutorials for the py4DSTEM Python package. For more information about py4DSTEM, including installation ins

11 Dec 23, 2022