As-ViT: Auto-scaling Vision Transformers without Training

Overview

As-ViT: Auto-scaling Vision Transformers without Training [PDF]

MIT licensed

Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, Denny Zhou

In ICLR 2022.

Note: We implemented topology search (sec. 3.3) and scaling (sec. 3.4) in this code base in PyTorch. Our training code is based on Tensorflow and Keras on TPU, which will be released soon.

Overview

We present As-ViT, a framework that unifies the automatic architecture design and scaling for ViT (vision transformer), in a training-free strategy.

Highlights:

  • Trainig-free ViT Architecture Design: we design a "seed" ViT topology by leveraging a training-free search process. This extremely fast search is fulfilled by our comprehensive study of ViT's network complexity (length distorsion), yielding a strong Kendall-tau correlation with ground-truth accuracies.
  • Trainig-free ViT Architecture Scaling: starting from the "seed" topology, we automate the scaling rule for ViTs by growing widths/depths to different ViT layers. This will generate a series of architectures with different numbers of parameters in a single run.
  • Efficient ViT Training via Progressive Tokenization: we observe that ViTs can tolerate coarse tokenization in early training stages, and further propose to train ViTs faster and cheaper with a progressive tokenization strategy.

teaser
Left: Length Distortion shows a strong correlation with ViT's accuracy. Middle: Auto scaling rule of As-ViT. Right: Progressive re-tokenization for efficient ViT training.

Prerequisites

  • Ubuntu 18.04
  • Python 3.6.9
  • CUDA 11.0 (lower versions may work but were not tested)
  • NVIDIA GPU + CuDNN v7.6

This repository has been tested on V100 GPU. Configurations may need to be changed on different platforms.

Installation

  • Clone this repo:
git clone https://github.com/VITA-Grou/AsViT.git
cd AsViT
  • Install dependencies:
pip install -r requirements.txt

1. Seed As-ViT Topology Search

CUDA_VISIBLE_DEVICES=0 python ./search/reinforce.py --save_dir ./output/REINFORCE-imagenet --data_path /path/to/imagenet

This job will return you a seed topology. For example, our search seed topology is 8,2,3|4,1,2|4,1,4|4,1,6|32, which can be explained as below:

Stage1 Stage2 Stage3 Stage4 Head
Kernel K1 Split S1 Expansion E1 Kernel K2 Split S2 Expansion E2 Kernel K3 Split S3 Expansion E3 Kernel K4 Split S4 Expansion E4
8 2 3 4 1 2 4 1 4 4 1 6 32

2. Scaling

CUDA_VISIBLE_DEVICES=0 python ./search/grow.py --save_dir ./output/GROW-imagenet \
--arch "[arch]" --data_path /path/to/imagenet

Here [arch] is the seed topology (output from step 1 above). This job will return you a series of topologies. For example, our largest topology (As-ViT Large) is 8,2,3,5|4,1,2,2|4,1,4,5|4,1,6,2|32,180, which can be explained as below:

Stage1 Stage2 Stage3 Stage4 Head Initial Hidden Size
Kernel K1 Split S1 Expansion E1 Layers L1 Kernel K2 Split S2 Expansion E2 Layers L2 Kernel K3 Split S3 Expansion E3 Layers L3 Kernel K4 Split S4 Expansion E4 Layers L4
8 2 3 5 4 1 2 2 4 1 4 5 4 1 6 2 32 180

3. Evaluation

Tensorflow and Keras code for training on TPU. To be released soon.

Citation

@inproceedings{chen2021asvit,
  title={Auto-scaling Vision Transformers without Training},
  author={Chen, Wuyang and Huang, Wei and Du, Xianzhi and Song, Xiaodan and Wang, Zhangyang and Zhou, Denny},
  booktitle={International Conference on Learning Representations},
  year={2022}
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Code for Environment Dynamics Decomposition (ED2).

ED2 Code for Environment Dynamics Decomposition (ED2). Installation Follow the installation in MBPO and Dreamer. Usage First follow the SD2 method for

0 Aug 10, 2021
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"

Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P

44 Jan 06, 2023
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
The Video-based Accident Detection System built in Python

Accident-detection-system About the Project This Repository contains the Video-based Accident Detection System built in Python. Contributors Yukta Gop

SURYAVANSHI SNEHAL BALKRISHNA 50 Dec 07, 2022
Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Paper | Blog OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image gene

OFA Sys 1.4k Jan 08, 2023
Joint Discriminative and Generative Learning for Person Re-identification. CVPR'19 (Oral)

Joint Discriminative and Generative Learning for Person Re-identification [Project] [Paper] [YouTube] [Bilibili] [Poster] [Supp] Joint Discriminative

NVIDIA Research Projects 1.2k Dec 30, 2022
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

郝翔 357 Jan 04, 2023
HiFi++: a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement

HiFi++ : a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement This is the unofficial implementation of Vocoder part of

Rishikesh (ऋषिकेश) 118 Dec 29, 2022
Human Pose Detection on EdgeTPU

Coral PoseNet Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for exa

google-coral 476 Dec 31, 2022
Automatic meme generation model using Tensorflow Keras.

Memefly You can find the project at MemeflyAI. Contributors Nick Buukhalter Harsh Desai Han Lee Project Overview Trello Board Product Canvas Automatic

BloomTech Labs 2 Jan 13, 2022
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022
Paper: De-rendering Stylized Texts

Paper: De-rendering Stylized Texts Wataru Shimoda1, Daichi Haraguchi2, Seiichi Uchida2, Kota Yamaguchi1 1CyberAgent.Inc, 2 Kyushu University Accepted

CyberAgent AI Lab 55 Dec 18, 2022
The Balloon Learning Environment - flying stratospheric balloons with deep reinforcement learning.

Balloon Learning Environment Docs The Balloon Learning Environment (BLE) is a simulator for stratospheric balloons. It is designed as a benchmark envi

Google 87 Dec 25, 2022
System-oriented IR evaluations are limited to rather abstract understandings of real user behavior

Validating Simulations of User Query Variants This repository contains the scripts of the experiments and evaluations, simulated queries, as well as t

IR Group at Technische Hochschule Köln 2 Nov 23, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 06, 2023
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022
HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty

HHP-Net: A light Heteroscedastic neural network for Head Pose estimation with uncertainty Giorgio Cantarini, Francesca Odone, Nicoletta Noceti, Federi

18 Aug 02, 2022