Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Overview

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

License: MIT

Code for this paper Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly. [Preprint]

Tianlong Chen, Yu Cheng, Zhe Gan, Jingjing Liu, Zhangyang Wang.

Overview

Training generative adversarial networks (GANs) with limited data generally results in deteriorated performance and collapsed models. To conquerthis challenge, we are inspired by the latest observation of Kalibhat et al. (2020); Chen et al.(2021d), that one can discover independently trainable and highly sparse subnetworks (a.k.a.,lottery tickets) from GANs. Treating this as aninductive prior, we decompose the data-hungry GAN training into two sequential sub-problems:

  • (i) identifying the lottery ticket from the original GAN;
  • (ii) then training the found sparse subnetwork with aggressive data and feature augmentations.

Both sub-problems re-use the same small training set of real images. Such a coordinated framework enables us to focus on lower-complexity and more data-efficient sub-problems, effectively stabilizing trainingand improving convergence.

Methodology

Experiment Results

More experiments can be found in our paper.

Implementation

For the first step, finding the lottery tickets in GAN is referred to this repo.

For the second step, training GAN ticket toughly are provides as follow:

Environment for SNGAN

conda install python3.6
conda install pytorch1.4.0 -c pytorch
pip install tensorflow-gpu==1.13
pip install imageio
pip install tensorboardx

R.K. Donwload fid statistics from Fid_Stat.

Commands for SNGAN

R.K. Limited data training for SNGAN

  • Dataset: CIFAR-10

Example for full model training on 20% limited data (--ratio 0.2):

python train_less.py -gen_bs 128 -dis_bs 64 --dataset cifar10 --img_size 32 --max_iter 50000 --model sngan_cifar10 --latent_dim 128 --gf_dim 256 --df_dim 128 --g_spectral_norm False --d_spectral_norm True --g_lr 0.0002 --d_lr 0.0002 --beta1 0.0 --beta2 0.9 --init_type xavier_uniform --n_critic 5 --val_freq 20 --exp_name sngan_cifar10_adv_gd_less_0.2 --init-path initial_weights --ratio 0.2

Example for full model training on 20% limited data (--ratio 0.2) with AdvAug on G and D:

python train_adv_gd_less.py -gen_bs 128 -dis_bs 64 --dataset cifar10 --img_size 32 --max_iter 50000 --model sngan_cifar10 --latent_dim 128 --gf_dim 256 --df_dim 128 --g_spectral_norm False --d_spectral_norm True --g_lr 0.0002 --d_lr 0.0002 --beta1 0.0 --beta2 0.9 --init_type xavier_uniform --n_critic 5 --val_freq 20 --exp_name sngan_cifar10_adv_gd_less_0.2 --init-path initial_weights --gamma 0.01 --step 1 --ratio 0.2

Example for sparse model (i.e., GAN tickets) training on 20% limited data (--ratio 0.2) with AdvAug on G and D:

python train_with_masks_adv_gd_less.py -gen_bs 128 -dis_bs 64 --dataset cifar10 --img_size 32 --max_iter 50000 --model sngan_cifar10 --latent_dim 128 --gf_dim 256 --df_dim 128 --g_spectral_norm False --d_spectral_norm True --g_lr 0.0002 --d_lr 0.0002 --beta1 0.0 --beta2 0.9 --init_type xavier_uniform --n_critic 5 --val_freq 20 --exp_name sngan_cifar10_adv_gd_less_0.2 --init-path initial_weights --gamma 0.01 --step 1 --ratio 0.2 --rewind-path <>
  • --rewind-path: the stored path of identified sparse masks

Environment for BigGAN

conda env create -f environment.yml studiogan

Commands for BigGAN

R.K. Limited data training for BigGAN

  • Dataset: TINY ILSVRC

Example:

python main_ompg.py -t -e -c ./configs/TINY_ILSVRC2012/BigGAN_adv.json --eval_type valid --seed 42 --mask_path checkpoints/BigGAN-train-0.1 --mask_round 2 --reduce_train_dataset 0.1 --gamma 0.01 
  • --mask_path: the stored path of identified sparse masks
  • --mask_round: the sparsity level = 0.8 ^ mask_round
  • --reduce_train_dataset: the size of used limited training data
  • --gamma: hyperparameter for AdvAug. You can set it to 0 to git rid of AdvAug

  • Dataset: CIFAR100

Example:

python main_ompg.py -t -e -c ./configs/CIFAR100_less/DiffAugGAN_adv.json --ratio 0.2 --mask_path checkpoints/diffauggan_cifar100_0.2 --mask_round 9 --seed 42 --gamma 0.01
  • DiffAugGAN_adv.json: it indicate this confirguration use DiffAug.

Pre-trained Models

  • SNGAN / CIFAR-10 / 10% Training Data / 10.74% Remaining Weights

https://www.dropbox.com/sh/7v8hn2859cvm7jj/AACyN8FOkMjgMwy5ibVj61IPa?dl=0

  • SNGAN / CIFAR-10 / 10% Training Data / 10.74% Remaining Weights + AdvAug on G and D

https://www.dropbox.com/sh/gsklrdcjzogqzcd/AAALlIYcWOZuERLcocKIqlEya?dl=0

  • BigGAN / CIFAR-10 / 10% Training Data / 13.42% Remaining Weights + DiffAug + AdvAug on G and D

https://www.dropbox.com/sh/epuajb1iqn5xma6/AAAD0zwehky1wvV3M3-uesHsa?dl=0

  • BigGAN / CIFAR-100 10% / Training Data / 13.42% Remaining Weights + DiffAug + AdvAug on G and D

https://www.dropbox.com/sh/y3pqdqee39jpct4/AAAsSebqHwkWmjO_O8Hp0hcEa?dl=0

  • BigGAN / Tiny-ImageNet / 10% Training Data / Full model

https://www.dropbox.com/sh/2rmvqwgcjir1p2l/AABNEo0B-0V9ZSnLnKF_OUA3a?dl=0

  • BigGAN / Tiny-ImageNet / 10% Training Data / Full model + AdvAug on G and D

https://www.dropbox.com/sh/pbwjphualzdy2oe/AACZ7VYJctNBKz3E9b8fgj_Ia?dl=0

  • BigGAN / Tiny-ImageNet / 10% Training Data / 64% Remaining Weights

https://www.dropbox.com/sh/82i9z44uuczj3u3/AAARsfNzOgd1R9sKuh1OqUdoa?dl=0

  • BigGAN / Tiny-ImageNet / 10% Training Data / 64% Remaining Weights + AdvAug on G and D

https://www.dropbox.com/sh/yknk1joigx0ufbo/AAChMvzCsedejFjY1XxGcaUta?dl=0

Citation

@misc{chen2021ultradataefficient,
      title={Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly}, 
      author={Tianlong Chen and Yu Cheng and Zhe Gan and Jingjing Liu and Zhangyang Wang},
      year={2021},
      eprint={2103.00397},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Acknowledgement

https://github.com/VITA-Group/GAN-LTH

https://github.com/GongXinyuu/sngan.pytorch

https://github.com/VITA-Group/AutoGAN

https://github.com/POSTECH-CVLab/PyTorch-StudioGAN

https://github.com/mit-han-lab/data-efficient-gans

https://github.com/lucidrains/stylegan2-pytorch

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Hansheng Jiang 6 Nov 18, 2022
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
A repository for benchmarking neural vocoders by their quality and speed.

License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para

Meta Research 177 Dec 12, 2022
Code to accompany our paper "Continual Learning Through Synaptic Intelligence" ICML 2017

Continual Learning Through Synaptic Intelligence This repository contains code to reproduce the key findings of our path integral approach to prevent

Ganguli Lab 82 Nov 03, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

PDVC Official implementation for End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021) [paper] [valse论文速递(Chinese)] This repo supports:

Teng Wang 118 Dec 16, 2022
Load What You Need: Smaller Multilingual Transformers for Pytorch and TensorFlow 2.0.

Smaller Multilingual Transformers This repository shares smaller versions of multilingual transformers that keep the same representations offered by t

Geotrend 79 Dec 28, 2022
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
TResNet: High Performance GPU-Dedicated Architecture

TResNet: High Performance GPU-Dedicated Architecture paperV2 | pretrained models Official PyTorch Implementation Tal Ridnik, Hussam Lawen, Asaf Noy, I

426 Dec 28, 2022
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
Simple PyTorch hierarchical models.

A python package adding basic hierarchal networks in pytorch for classification tasks. It implements a simple hierarchal network structure based on feed-backward outputs.

Rajiv Sarvepalli 5 Mar 06, 2022
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
The repository forked from NVlabs uses our data. (Differentiable rasterization applied to 3D model simplification tasks)

nvdiffmodeling [origin_code] Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Autom

Qiujie (Jay) Dong 2 Oct 31, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
Detecting Potentially Harmful and Protective Suicide-related Content on Twitter

TwitterSuicideML Scripts for reproducing the Machine Learning analysis of the paper: Detecting Potentially Harmful and Protective Suicide-related Cont

3 Oct 17, 2022
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023