🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

Overview

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar)

The PASTIS Dataset

  • Dataset presentation

PASTIS is a benchmark dataset for panoptic and semantic segmentation of agricultural parcels from satellite time series. It contains 2,433 patches within the French metropolitan territory with panoptic annotations (instance index + semantic labelfor each pixel). Each patch is a Sentinel-2 multispectral image time series of variable lentgh.

We propose an official 5 fold split provided in the dataset's metadata, and evaluated several of the top-performing image time series networks. You are welcome to use our numbers and to submit your own entries to the leaderboard!

  • Dataset in numbers
▶️ 2,433 time series ▶️ 124,422 individual parcels ▶️ 18 crop types
▶️ 128x128 pixels / images ▶️ 38-61 acquisitions / series ▶️ 10m / pixel
▶️ 10 spectral bands ▶️ covers ~4,000 km² ▶️ over 2B pixels
  • 🔥 NEW: Radar extension (PASTIS-R)

We also propose an extended version of PASTIS which contains all radar observations of Sentinel-1 for all 2433 patches in addition to the Sentinel-2 images. For each patch, approximately 70 observations of Sentinel-1 in ascending orbit, and 70 observations in descending orbit are added to the dataset. The PASTIS-R extension can thus be used to evaluate optical-radar fusion methods for parcel-based classification, semantic segmentation, and panoptic segmentation.
For more details on PASTIS-R, refer to our recent paper on multi-modal fusion with attention-based models (link coming soon).

Usage

  • Download

The dataset can be downloaded from zenodo in different formats:

  1. PASTIS (29 GB zipped) : The original PASTIS dataset for semantic and panoptic segmentation on Sentinel-2 time series (format used for the ICCV 2021 paper). DOI
  2. PASTIS-R (54 GB zipped) : The extended version with Sentinel-1 observations. DOI
  3. PASTIS-R (pixel-set format) (27 GB zipped) : The PASTIS-R dataset prepared in pixel-set format for parcel-based classification only. See this repo and paper for more details on this format. DOI
  • Data loading

This repository also contains a PyTorch dataset class in code/dataloader.py that can be readily used to load data for training models on PASTIS and PASTIS-R. For the pixel-set dataset, use the dataloader in code/dataloader_pixelset.py. The time series contained in PASTIS have variable lengths. The code/collate.py contains a pad_collate function that you can use in the pytorch dataloader to temporally pad shorter sequences. The demo.ipynb notebook shows how to use these classes and methods to load data from PASTIS.

  • Metrics

A PyTorch implementation is also given in code/panoptic_metrics.py to compute the panoptic metrics. In order to use these metrics, the model's output should contain an instance prediction and a semantic prediction. The first one allocates an instance id to each pixel of the image, and the latter a semantic label.

Leaderboard

Please open an issue to submit new entries. Do mention if the work has been published and wether the code accessible for reproducibility. We require that at least a preprint is available to present the method used.

Semantic Segmentation

Optical only (PASTIS)

Model name #Params OA mIoU Published
U-TAE 1.1M 83.2% 63.1% ✔️ link
Unet-3d* 1.6M 81.3% 58.4% ✔️ link
Unet-ConvLSTM* 1.5M 82.1% 57.8% ✔️ link
FPN-ConvLSTM* 1.3M 81.6% 57.1% ✔️ link
Models that we re-implemented ourselves are denoted with a star (*).

Optical+Radar fusion (PASTIS-R)

Model name #Params OA mIoU Published
Late Fusion (U-TAE) + Aux + TempDrop 1.7M 84.2% 66.3% ✔️ link
Early Fusion (U-TAE) + TempDrop 1.6M 83.8% 65.9% ✔️ link

Panoptic Segmentation

Optical only (PASTIS)

Model name #Params SQ RQ PQ Published
U-TAE + PaPs 1.3M 81.3 49.2 40.4 ✔️ link

Optical+Radar fusion (PASTIS-R)

Model name #Params SQ RQ PQ Published
Early Fusion (U-TAE + PaPs) + Aux + TempDrop 1.8M 82.2 50.6 42.0 ✔️ link
Late Fusion (U-TAE + PaPs) + TempDrop 2.4M 81.6 50.5 41.6 ✔️ link

Documentation

The agricultural parcels are grouped into 18 different crop classes as shown in the table below. The backgroud class corresponds to non-agricultural land, and the void label for parcels that are mostly outside their patch. drawing

Additional information about the dataset can be found in the documentation/pastis-documentation.pdf document.

References

If you use PASTIS please cite the related paper:

@article{garnot2021panoptic,
  title={Panoptic Segmentation of Satellite Image Time Series
with Convolutional Temporal Attention Networks},
  author={Sainte Fare Garnot, Vivien  and Landrieu, Loic },
  journal={ICCV},
  year={2021}
}

For the PASTIS-R optical-radar fusion dataset, please also cite this paper:

@article{garnot2021mmfusion,
  title={Multi-Modal Temporal Attention Models for Crop Mapping from Satellite Time Series},
  author={Sainte Fare Garnot, Vivien  and Landrieu, Loic and Chehata, Nesrine },
  journal={arxiv},
  year={2021}
}

Credits

  • The satellite imagery used in PASTIS was retrieved from THEIA: "Value-added data processed by the CNES for the Theia www.theia.land.fr data cluster using Copernicus data. The treatments use algorithms developed by Theia’s Scientific Expertise Centres. "

  • The annotations used in PASTIS stem from the French land parcel identification system produced by IGN, the French mapping agency.

  • This work was partly supported by ASP, the French Payment Agency.

  • We also thank Zenodo for hosting the datasets.

UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applic

SAFARI Research Group at ETH Zurich and Carnegie Mellon University 19 Dec 26, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

57 Nov 28, 2022
A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022
Code for Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Piggyback: https://arxiv.org/abs/1801.06519 Pretrained masks and backbones are available here: https://uofi.box.com/s/c5kixsvtrghu9yj51yb1oe853ltdfz4q

Arun Mallya 165 Nov 22, 2022
Machine learning algorithms for many-body quantum systems

NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and

NetKet 413 Dec 31, 2022
Autoencoder - Reducing the Dimensionality of Data with Neural Network

autoencoder Implementation of the Reducing the Dimensionality of Data with Neural Network – G. E. Hinton and R. R. Salakhutdinov paper. Notes Aim to m

Jordan Burgess 13 Nov 17, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
AutoVideo: An Automated Video Action Recognition System

AutoVideo is a system for automated video analysis. It is developed based on D3M infrastructure, which describes machine learning with generic pipeline languages. Currently, it focuses on video actio

Data Analytics Lab at Texas A&M University 267 Dec 17, 2022
pytorch implementation of trDesign

trdesign-pytorch This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port o

Learn Ventures Inc. 41 Dec 29, 2022
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
Protect against subdomain takeover

domain-protect scans Amazon Route53 across an AWS Organization for domain records vulnerable to takeover deploy to security audit account scan your en

OVO Technology 0 Nov 17, 2022
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022