Python tools for 3D face: 3DMM, Mesh processing(transform, camera, light, render), 3D face representations.

Related tags

Deep Learningface3d
Overview

face3d: Python tools for processing 3D face

Introduction

This project implements some basic functions related to 3D faces.

You can use this to process mesh data, generate 3D faces from morphable model, reconstruct 3D face with a single image and key points as inputs, render faces with difference lightings(for more, please see examples).

In the beginning, I wrote this project for learning 3D face reconstruction and for personal research use, so all the codes are written in python(numpy). However, some functions(eg. rasterization) can not use vectorization to optimize, writing them in python is too slow to use, then I choose to write these core parts in c++(without any other big libraries, such as opencv, eigen) and compile them with Cython for python use. So the final version is very lightweight and fast.

In addition, the numpy version is also retained, considering that beginners can focus on algorithms themselves in python and researches can modify and verify their ideas quickly. I also try my best to add references/formulas in each function, so that you can learn basic knowledge and understand the codes.

For more information and researches related to 3D faces, please see 3D face papers.

Enjoy it ^_^

Structure

# Since triangle mesh is the most popular representation of 3D face, 
# the main part is mesh processing.
mesh/             # written in python and c++
|  cython/               # c++ files, use cython to compile 
|  io.py                 # read & write obj
|  vis.py                # plot mesh
|  transform.py          # transform mesh & estimate matrix
|  light.py              # add light & estimate light(to do)
|  render.py             # obj to image using rasterization render

mesh_numpy/      # the same with mesh/, with each part written in numpy
                 # slow but easy to learn and modify

# 3DMM is one of the most popular methods to generate & reconstruct 3D face.
morphable_model/
|  morphable_model.py    # morphable model class: generate & fit
|  fit.py                # estimate shape&expression parameters. 3dmm fitting.
|  load.py               # load 3dmm data

Examples:

cd ./examples

  • 3dmm. python 2_3dmm.py

    left: random example generated by 3dmm

    right: fitting face with 3dmm using 68 key points

  • transform. python 3_transform.py
    left:

    fix camera position & use orthographic projection. (often used in reconstruction)

    then transform face object: scale, change pitch angle, change yaw angle, change roll angle

    right:

    fix obj position & use perspective projection(fovy=30). (simulating real views)

    then move camera position and rotate camera: from far to near, down & up, left & right, rotate camera

  • light. python 4_light.py

    single point light: from left to right, from up to down, from near to far

  • image map python 6_image_map.py

    render different attributes in image pixels.

    : depth, pncc, uv coordinates

  • uv map python 7_uv_map.py

    render different attributes in uv coordinates.

    : colors(texture map), position(2d facial image & corresponding position map)

Getting Started

Prerequisite

  • Python 2 or Python 3

  • Python packages:

    • numpy
    • skimage (for reading&writing image)
    • scipy (for loading mat)
    • matplotlib (for show)
    • Cython (for compiling c++ file)

Usage

  1. Clone the repository

    git clone https://github.com/YadiraF/face3d
    cd face3d
  2. Compile c++ files to .so for python use (ignore if you use numpy version)

    cd face3d/mesh/cython
    python setup.py build_ext -i 
  3. Prepare BFM Data (ignore if you don't use 3dmm)

    see Data/BFM/readme.md

  4. Run examples

    (examples use cython version, you can change mesh into mesh_numpy to use numpy version)

    cd examples
    python 1_pipeline.py 

    For beginners who want to continue researches on 3D faces, I strongly recommend you first run examples according to the order, then view the codes in mesh_numpy and read the comments written in the beginning in each file. Hope this helps!

    Moreover, I am new in computer graphics, so it would be great appreciated if you could point out some of my wrong expressions. Thanks!

Changelog

  • 2018/10/08 change structure. add comments. add introduction. add paper collections.
  • 2018/07/15 first release
Owner
Yao Feng
Yao Feng
Churn prediction

Churn-prediction Churn-prediction Data preprocessing:: Label encoder is used to normalize the categorical variable Data Transformation:: For each data

1 Sep 28, 2022
project page for VinVL

VinVL: Revisiting Visual Representations in Vision-Language Models Updates 02/28/2021: Project page built. Introduction This repository is the project

308 Jan 09, 2023
Evaluating Privacy-Preserving Machine Learning in Critical Infrastructures: A Case Study on Time-Series Classification

PPML-TSA This repository provides all code necessary to reproduce the results reported in our paper Evaluating Privacy-Preserving Machine Learning in

Dominik 1 Mar 08, 2022
Image morphing without reference points by applying warp maps and optimizing over them.

Differentiable Morphing Image morphing without reference points by applying warp maps and optimizing over them. Differentiable Morphing is machine lea

Alex K 380 Dec 19, 2022
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
Syllabus del curso IIC2115 - Programación como Herramienta para la Ingeniería 2022/I

IIC2115 - Programación como Herramienta para la Ingeniería Videos y tutoriales Tutorial CMD Tutorial Instalación Python y Jupyter Tutorial de git-GitH

21 Nov 09, 2022
Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Libo Qin 25 Sep 06, 2022
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

226 Jan 08, 2023
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
A curated list of references for MLOps

A curated list of references for MLOps

Larysa Visengeriyeva 9.3k Jan 07, 2023
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
Utilities and information for the signals.numer.ai tournament

dsignals Utilities and information for the signals.numer.ai tournament using eodhistoricaldata.com eodhistoricaldata.com provides excellent historical

Degerhan Usluel 23 Dec 18, 2022