Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Overview

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021)

by Qiming Hu, Xiaojie Guo.

Dependencies

  • Python3
  • PyTorch>=1.0
  • OpenCV-Python, TensorboardX, Visdom
  • NVIDIA GPU+CUDA

Network Architecture

figure_arch

🚀 1. Single Image Reflection Separation

Data Preparation

Training dataset

  • 7,643 images from the Pascal VOC dataset, center-cropped as 224 x 224 slices to synthesize training pairs.
  • 90 real-world training pairs provided by Zhang et al.

Tesing dataset

  • 45 real-world testing images from CEILNet dataset.
  • 20 real testing pairs provided by Zhang et al.
  • 454 real testing pairs from SIR^2 dataset, containing three subsets (i.e., Objects (200), Postcard (199), Wild (55)).

Usage

Training

  • For stage 1: python train_sirs.py --inet ytmt_ucs --model ytmt_model_sirs --name ytmt_ucs_sirs --hyper --if_align
  • For stage 2: python train_twostage_sirs.py --inet ytmt_ucs --model twostage_ytmt_model --name ytmt_uct_sirs --hyper --if_align --resume --resume_epoch xx --checkpoints_dir xxx

Testing

python test_sirs.py --inet ytmt_ucs --model twostage_ytmt_model --name ytmt_uct_sirs_test --hyper --if_align --resume --icnn_path ./checkpoints/ytmt_uct_sirs/twostage_unet_68_077_00595364.pt

Trained weights

Google Drive

Visual comparison on real20 and SIR^2

figure_eval

Visual comparison on real45

figure_test

🚀 2. Single Image Denoising

Data Preparation

Training datasets

400 images from the Berkeley segmentation dataset, following DnCNN.

Tesing datasets

BSD68 dataset and Set12.

Usage

Training

python train_denoising.py --inet ytmt_pas --name ytmt_pas_denoising --preprocess True --num_of_layers 9 --mode B --preprocess True

Testing

python test_denoising.py --inet ytmt_pas --name ytmt_pas_denoising_blindtest_25 --test_noiseL 25 --num_of_layers 9 --test_data Set68 --icnn_path ./checkpoints/ytmt_pas_denoising_49_157500.pt

Trained weights

Google Drive

Visual comparison on a sample from BSD68

figure_eval_denoising

🚀 3. Single Image Demoireing

Data Preparation

Training dataset

AIM 2019 Demoireing Challenge

Tesing dataset

100 moireing and clean pairs from AIM 2019 Demoireing Challenge.

Usage

Training

python train_demoire.py --inet ytmt_ucs --model ytmt_model_demoire --name ytmt_uas_demoire --hyper --if_align

Testing

python test_demoire.py --inet ytmt_ucs --model ytmt_model_demoire --name ytmt_uas_demoire_test --hyper --if_align --resume --icnn_path ./checkpoints/ytmt_ucs_demoire/ytmt_ucs_opt_086_00860000.pt

Trained weights

Google Drive

Visual comparison on the validation set of LCDMoire

figure_eval_demoire

You might also like...
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow

xRBM Library Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow Installation Using pip: pip install xrbm Examples Tut

A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Official implementation of AAAI-21 paper
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

Comments
  • Datasets

    Datasets

    Hi,

    I have been trying to experiment with the model but I'm having trouble finding the correct datasets for testing. The Sirs2 dataset in the provided link doesn't have the images set up with the naming conventions used in the script. Could you please direct me to the correct data sets for testing and training? Is there a separate repository that you have used?

    Thanks so much,

    David

    opened by davidgaddie 3
  • About Training Details

    About Training Details

    Hello, thank you for sharing your wonderful work. I have some question about the triaining details. It says the training epoch is 120 in your paper but the epoch is set to 60 in YTMT-Strategy/options/net_options/train_options.py. Moreover, the best model in your paper is YTMT-UCT which need two stages training. Can you provide the training settings of the YTMT-UCT (epoch, batchsize...)? Look forward to your reply!

    opened by DUT-CSJ 2
  • CUDA vram allocation issue

    CUDA vram allocation issue

    Hi,

    I've been trying to run the reflection test code, but I get this error: RuntimeError: CUDA out of memory. Tried to allocate 15.66 GiB (GPU 0; 22.20 GiB total capacity; 16.09 GiB already allocated; 2.68 GiB free; 17.55 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

    I'm running on an A10G GPU on AWS. I suspect that maybe the dataset is incorrect as each image in the dataset I have is around 800MB. If that's the case can I please be directed to the correct repository for the read20_420 images?

    Thanks so much,

    David

    opened by davidgaddie 1
  • test demoire error

    test demoire error

    Thanks for your great work ,but some error when I run: python test_demoire.py --inet ytmt_ucs --model ytmt_model_demoire --name ytmt_uas_demoire_test --hyper --if_align --resume --icnn_path checkpoints/ytmt_ucs_demoire/ytmt_ucs_demoire_opt_086_00860000.pt

    -------------- End ---------------- [i] initialization method [edsr] Traceback (most recent call last): File "test_demoire.py", line 28, in engine = Engine(opt) File "/nfs_data/code/YTMT-Strategy-main/engine.py", line 19, in init self.__setup() File "/nfs_data/code/YTMT-Strategy-main/engine.py", line 29, in __setup self.model.initialize(opt) File "/nfs_data/code/YTMT-Strategy-main/models/ytmt_model_demoire.py", line 242, in initialize self.load(self, opt.resume_epoch) File "/nfs_data/code/YTMT-Strategy-main/models/ytmt_model_demoire.py", line 413, in load model.net_i.load_state_dict(state_dict['icnn']) File "/opt/conda/envs/torch/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1223, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for YTMT_US: Missing key(s) in state_dict: "inc.ytmt_head.fusion_l.weight", "inc.ytmt_head.fusion_l.bias", "inc.ytmt_head.fusion_r.weight", "inc.ytmt_head.fusion_r.bias", "down1.model.ytmt_head.fusion_l.weight", "down1.model.ytmt_head.fusion_l.bias", "down1.model.ytmt_head.fusion_r.weight", "down1.model.ytmt_head.fusion_r.bias", "down2.model.ytmt_head.fusion_l.weight", "down2.model.ytmt_head.fusion_l.bias", "down2.model.ytmt_head.fusion_r.weight", "down2.model.ytmt_head.fusion_r.bias", "down3.model.ytmt_head.fusion_l.weight", "down3.model.ytmt_head.fusion_l.bias", "down3.model.ytmt_head.fusion_r.weight", "down3.model.ytmt_head.fusion_r.bias", "down4.model.ytmt_head.fusion_l.weight", "down4.model.ytmt_head.fusion_l.bias", "down4.model.ytmt_head.fusion_r.weight", "down4.model.ytmt_head.fusion_r.bias", "up1.model.ytmt_head.fusion_l.weight", "up1.model.ytmt_head.fusion_l.bias", "up1.model.ytmt_head.fusion_r.weight", "up1.model.ytmt_head.fusion_r.bias", "up2.model.ytmt_head.fusion_l.weight", "up2.model.ytmt_head.fusion_l.bias", "up2.model.ytmt_head.fusion_r.weight", "up2.model.ytmt_head.fusion_r.bias", "up3.model.ytmt_head.fusion_l.weight", "up3.model.ytmt_head.fusion_l.bias", "up3.model.ytmt_head.fusion_r.weight", "up3.model.ytmt_head.fusion_r.bias", "up4.model.ytmt_head.fusion_l.weight", "up4.model.ytmt_head.fusion_l.bias", "up4.model.ytmt_head.fusion_r.weight", "up4.model.ytmt_head.fusion_r.bias".

    opened by zdyshine 1
Owner
Qiming Hu
Qiming Hu
This folder contains the python code of UR5E's advanced forward kinematics model.

This folder contains the python code of UR5E's advanced forward kinematics model. By entering the angle of the joint of UR5e, the detailed coordinates of up to 48 points around the robot arm can be c

Qiang Wang 4 Sep 17, 2022
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

567 Dec 26, 2022
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
Multi agent DDPG algorithm written in Python + Pytorch

Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.

Rogier Wachters 2 Feb 26, 2022
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
Deep Distributed Control of Port-Hamiltonian Systems

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH) This repository is associated to the paper [1] and it contains: The full p

Dependable Control and Decision group - EPFL 3 Aug 17, 2022
Keras implementation of Deeplab v3+ with pretrained weights

Keras implementation of Deeplabv3+ This repo is not longer maintained. I won't respond to issues but will merge PR DeepLab is a state-of-art deep lear

1.3k Dec 07, 2022
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
Functional deep learning

Pipeline abstractions for deep learning. Full documentation here: https://lf1-io.github.io/padl/ PADL: is a pipeline builder for PyTorch. may be used

LF1 101 Nov 09, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)

Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019) To make better use of given limited labels, we propo

126 Sep 13, 2022
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
This project helps to colorize grayscale images using multiple exemplars.

Multiple Exemplar-based Deep Colorization (Pytorch Implementation) Pretrained Model [Jitendra Chautharia](IIT Jodhpur)1,3, Prerequisites Python 3.6+ N

jitendra chautharia 3 Aug 05, 2022
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom Binding Challenge

UmojaHack-Africa-2022-African-Snake-Antivenom-Binding-Challenge This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom

Mami Mokhtar 10 Dec 03, 2022
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
This project is used for the paper Differentiable Programming of Isometric Tensor Network

This project is used for the paper "Differentiable Programming of Isometric Tensor Network". (arXiv:2110.03898)

Chenhua Geng 15 Dec 13, 2022