Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Overview


Release Website Documentation Discord


Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create, store, manipulate, search and analyse vectors alongside json documents to power applications such as neural search, semantic search, personalised recommendations recommendations etc.


Features

  • Multimedia Data Vectorisation: Image2Vec, Audio2Vec, etc (Any data can be turned into vectors through machine learning)
  • Document Orientated Store: Store your vectors alongside documents without having to do a db lookup for metadata about the vectors.
  • Vector Similarity Search: Enable searching of vectors and rich multimedia with vector similarity search. The backbone of many popular A.I use cases like reverse image search, recommendations, personalisation, etc.
  • Hybrid Search: There are scenarios where vector search is not as effective as traditional search, e.g. searching for skus. Vector AI lets you combine vector search with all the features of traditional search such as filtering, fuzzy search, keyword matching to create an even more powerful search.
  • Multi-Model Weighted Search: Our Vector search is highly customisable and you can peform searches with multiple vectors from multiple models and give them different weightings.
  • Vector Operations: Flexible search with out of the box operations on vectors. e.g. mean, median, sum, etc.
  • Aggregation: All the traditional aggregation you'd expect. e.g. group by mean, pivot tables, etc
  • Clustering: Interpret your vectors and data by allocating them to buckets and get statistics about these different buckets based on data you provide.
  • Vector Analytics: Get better understanding of your vectors by using out-of-the-box practical vector analytics, giving you better understanding of the quality of your vectors.

Quick Terminologies

  • Models/Encoders (aka. Embedders) ~ Turns data into vectors e.g. Word2Vec turns words into vector
  • Vector Similarity Search (aka. Nearest Neighbor Search, Distance Search)
  • Collection (aka. Index, Table) ~ a collection is made up of multiple documents
  • Documents (aka. Json, Item, Dictionary, Row) ~ a document can contain vectors, text and links to videos/images/audio.

QuickStart

Install via pip! Compatible with any OS.

pip install vectorai

If you require the nightly version due to on-going improvements, you can install the nightly version using:

pip install vectorai-nightly

Note: while the nightly version will still pass automated tests, it may not be stable.

Check out our quickstart notebook on how to make a text/image/audio search engine in 5 minutes: quickstart.ipynb

from vectorai import ViClient, request_api_key

api_key = request_api_key(username=<username>, email=<email>, description=<description>, referral_code="github_referred")

vi_client = ViClient(username=username, api_key=api_key)

from vectorai.models.deployed import ViText2Vec
text_encoder = ViText2Vec(username, api_key)

documents = [
    {
        '_id': 0,
        'color': 'red'
    },
    {
        '_id': 1,
        'color': 'blue'
    }
]

# Insert the data
vi_client.insert_documents('test-collection', documents, models={'color': text_encoder.encode})

# Search the data
vi_client.search('test-collection', text_encoder.encode('maroon'), 'color_vector_', page_size=2)

# Get Recommendations
vi_client.search_by_id('test-collection', '1', 'color_vector_', page_size=2)

Access Powerful Vector Analytics

Vector AI has powerful visualisations to allow you to analyse your vectors as easily as possible - in 1 line of code.

vi_client.plot_dimensionality_reduced_vectors(documents, 
    point_label='title', 
    dim_reduction_field='_dr_ivis', 
    cluster_field='centroid_title', cluster_label='centroid_title')

View Dimensionality-Reduced Vectors

vi_client.plot_2d_cosine_similarity(
    documents,
    documents[0:2],
    vector_fields=['use_vector_'],
    label='name',
    anchor_document=documents[0]
)

Compare vectors and their search performance on your documents easily! 1D plot cosine simlarity


Why Vector AI compared to other Nearest Neighbor implementations?

  • Production Ready: Our API is fully managed and can scale to power hundreds of millions of searches a day. Even at millions of searches it is blazing fast through edge caching, GPU utilisation and software optimisation so you never have to worry about scaling your infrastructure as your use case scales.
  • Simple to use. Quick to get started.: One of our core design principles is that we focus on how people can get started on using Vector AI as quickly as possible, whilst ensuring there is still a tonne of functionality and customisability options.
  • Richer understanding of your vectors and their properties: Our library is designed to allow people to do more than just obtain nearest neighbors, but to actually experiment, analyse, interpret and improve on them the moment the data added to the index.
  • Store vector data with ease: The document-orientated nature for Vector AI allows users to label, filter search and understand their vectors as much as possible.
  • Real time access to data: Vector AI data is accessible in real time, as soon as the data is inserted it is searchable straight away. No need to wait hours to build an index.
  • Framework agnostic: We are never going to force a specific framework on Vector AI. If you have a framework of choice, you can use it - as long as your documents are JSON-serializable!

Using VectorHub Models

VectorHub is Vector AI's main model repository. Models from VectorHub are built with scikit-learn interfaces and all have examples of Vector AI integration. If you are looking to experiment with new off-the-shelf models, we recommend giving VectorHub models a go - all of them have been tested on Colab and are able to be used in as little as 3 lines of code!

Schema Rules for documents (BYO Vectors and IDs)

Ensure that any vector fields contain a '_vector_' in its name and that any ID fields have the name '_id'.

For example:

example_item = {
    '_id': 'James',
    'skills_vector_': [0.123, 0.456, 0.789, 0.987, 0.654, 0.321]
}

The following will not be recognised as ID columns or vector columns.

example_item = {
    'name_id': 'James',
    'skillsvector_': [0.123, 0.456, 0.789, 0.987, 0.654, 0.321]
}

How does this differ from the VectorAI API?

The Python SDK is designed to provide a way for Pythonistas to unlock the power of VectorAI in as few lines as code as possible. It exposes all the elements of an API through our open-sourced automation tool and is the main way our data scientists and engineers interact with the VectorAI engine for quick prototyping before developers utilise API requests.

Note: The VectorAI SDK is built on the development server which can sometimes cause errors. However, this is important to ensure that users are able to access the most cutting-edge features as required. If you run into such issues, we recommend creating a GitHub Issue if it is non-urgent, but feel free to ping the Discord channel for more urgent enquiries.


Building Products with Vector AI

Creating a multi-language AI fashion assistant: https://fashionfiesta.me | Blog

Demo

Do share with us any blogs or websites you create with Vector AI!

You might also like...
The end-to-end platform for building voice products at scale
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Python library containing BART query generation and BERT-based Siamese models for neural retrieval.
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as

Repo for CVPR2021 paper
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding 📋 This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

Generative Query Network (GQN) in PyTorch as described in
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Comments
  • Accessing Discord

    Accessing Discord

    Hi Vector AI Team!

    I'm trying to access the Discord invite link mentioned in the readme: https://discord.gg/CbwUxyD But getting an "invalid invite link".

    I'm writing a new blog post covering the many neural search frameworks, in spirit of my blog post on Vector DBs: https://towardsdatascience.com/milvus-pinecone-vespa-weaviate-vald-gsi-what-unites-these-buzz-words-and-what-makes-each-9c65a3bd0696

    If that's okay, I'd like to ask a couple of questions on the inner workings of the framework and some of its features.

    Thanks,

    Dmitry

    opened by DmitryKey 0
  • Same search results for searching very different images.

    Same search results for searching very different images.

    Using the unsplash-images collection: https://playground.getvectorai.com/collections/?collection=unsplash-images

    result for: vi_client.search_image('unsplash-images', image_url, ['image_url_vector_']) with image_url as: https://www.rover.com/blog/wp-content/uploads/2020/06/siberian-husky-4735878_1920.jpg https://davidkerrphotography.co.nz/wp-content/uploads/2016/10/Slide01.jpg

    identical result for both:

    {'count': 17506,
     'results': [{'_clusters_': {},
                  '_id': 'tLUgvVaCQnY',
                  '_search_score': 0.6311334,
                  'dictionary_label_1': 'wineglasses',
                  'dictionary_label_2': 'delftware',
                  'image_url': 'https://images.unsplash.com/photo-1540735242080-bc0ad0cdcd1e?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.205446',
                  'likes': 150005},
                 {'_clusters_': {},
                  '_id': 'wVMuNOSt5KY',
                  '_search_score': 0.6278121000000001,
                  'dictionary_label_2': 'bootstrapping',
                  'image_url': 'https://images.unsplash.com/photo-1556912743-90a361c19b16?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.018132',
                  'likes': 173693},
                 {'_clusters_': {},
                  '_id': 'kkBXGVE9k-8',
                  '_search_score': 0.626989,
                  'dictionary_label_1': 'occupant',
                  'dictionary_label_2': 'catabolized',
                  'image_url': 'https://images.unsplash.com/photo-1526529516337-f40ddc5532e2?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.129598',
                  'likes': 627490},
                 {'_clusters_': {},
                  '_id': 'pLshzlb5yOA',
                  '_search_score': 0.6268415,
                  'dictionary_label_2': 'wood',
                  'image_url': 'https://images.unsplash.com/photo-1582459208380-f99d357adf33?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.096761',
                  'likes': 173756},
                 {'_clusters_': {},
                  '_id': 'sHmW616civc',
                  '_search_score': 0.6268100999999999,
                  'dictionary_label_2': 'trail',
                  'image_url': 'https://images.unsplash.com/photo-1556674524-65bf99573bef?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.000302',
                  'likes': 682592},
                 {'_clusters_': {},
                  '_id': 'VoTqMJLLSI8',
                  '_search_score': 0.6235797000000001,
                  'dictionary_label_1': 'trays',
                  'dictionary_label_2': 'dishware',
                  'image_url': 'https://images.unsplash.com/photo-1569272559969-2a9275513966?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.202763',
                  'likes': 172006},
                 {'_clusters_': {},
                  '_id': 'XcWKh-GF69M',
                  '_search_score': 0.6210401999999999,
                  'dictionary_label_2': 'obliging',
                  'image_url': 'https://images.unsplash.com/photo-1581280227715-56d3062138a9?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:20.517206',
                  'likes': 678324},
                 {'_clusters_': {},
                  '_id': 'b2_pVdk4lGI',
                  '_search_score': 0.6187004,
                  'dictionary_label_2': 'jukebox',
                  'image_url': 'https://images.unsplash.com/photo-1568967906094-1d0acfbf0676?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:20.509971',
                  'likes': 138088},
                 {'_clusters_': {},
                  '_id': '22HltbHJbPI',
                  '_search_score': 0.6182232000000001,
                  'dictionary_label_1': 'shoreline',
                  'dictionary_label_2': 'buckeens',
                  'image_url': 'https://images.unsplash.com/photo-1541514467948-60ec8a24e84f?w=300&q=80',
                  'insert_date_': '2021-02-25T09:44:25.156647',
                  'likes': 758805},
                 {'_clusters_': {},
                  '_id': 'uM3pEsEkPHA',
                  '_search_score': 0.6179558,
                  'dictionary_label_2': 'dewclaw',
                  'image_url': 'https://images.unsplash.com/photo-1572725364984-c2a074c6740c?w=300&q=80',
                  'insert_date_': '2021-02-25T03:38:08.111128',
                  'likes': 655907}]}
    
    opened by elliotsayes 4
  • Bulid type-safe assertive decorator

    Bulid type-safe assertive decorator

    With Python's type-safety is difficult but it can be implemented through smart use of Python decorators. An interesting example can be seen below:

    import itertools as it
    
    @parametrized
    def types(f, *types):
        def rep(*args):
            for a, t, n in zip(args, types, it.count()):
                if type(a) is not t:
                    raise TypeError('Value %d has not type %s. %s instead' %
                        (n, t, type(a))
                    )
            return f(*args)
        return rep
    
    @types(str, int)  # arg1 is str, arg2 is int
    def string_multiply(text, times):
        return text * times
    
    print(string_multiply('hello', 3))    # Prints hellohellohello
    print(string_multiply(3, 3))          # Fails miserably with TypeError
    
    # From: https://stackoverflow.com/questions/5929107/decorators-with-parameters
    
    enhancement 
    opened by boba-and-beer 0
Releases(v0.2.5)
The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

PointNav-VO The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation Project Page | Paper Table of Contents Setup

Xiaoming Zhao 41 Dec 15, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration

GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration Stefan Abi-Karam*, Yuqi He*, Rishov Sarkar*, Lakshmi Sathidevi, Zihang Qiao, Co

Sharc-Lab 19 Dec 15, 2022
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022
Code for STFT Transformer used in BirdCLEF 2021 competition.

STFT_Transformer Code for STFT Transformer used in BirdCLEF 2021 competition. The STFT Transformer is a new way to use Transformers similar to Vision

Jean-François Puget 69 Sep 29, 2022
Image based Human Fall Detection

Here I integrated the YOLOv5 object detection algorithm with my own created dataset which consists of human activity images to achieve low cost, high accuracy, and real-time computing requirements

UTTEJ KUMAR 12 Dec 11, 2022
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 07, 2022
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
Implementation of the ICCV'21 paper Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases

Temporally-Coherent Surface Reconstruction via Metric-Consistent Atlases [Papers 1, 2][Project page] [Video] The implementation of the papers Temporal

56 Nov 21, 2022
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
Azion the best solution of Edge Computing in the world.

Azion Edge Function docker action Create or update an Edge Functions on Azion Edge Nodes. The domain name is the key for decision to a create or updat

8 Jul 16, 2022
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.

129 Dec 30, 2022
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

halo 368 Dec 06, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8.1k Jan 02, 2023
[ACL-IJCNLP 2021] Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning

CLNER The code is for our ACL-IJCNLP 2021 paper: Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning CLNER is a

71 Dec 08, 2022
Inflated i3d network with inception backbone, weights transfered from tensorflow

I3D models transfered from Tensorflow to PyTorch This repo contains several scripts that allow to transfer the weights from the tensorflow implementat

Yana 479 Dec 08, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022