Unified tracking framework with a single appearance model

Related tags

Deep LearningUniTrack
Overview

UniTrack Logo


Paper: Do different tracking tasks require different appearance model?

[ArXiv] (comming soon) [Project Page] (comming soon)

UniTrack is a simple and Unified framework for versatile visual Tracking tasks.

As an important problem in computer vision, tracking has been fragmented into a multitude of different experimental setups. As a consequence, the literature has fragmented too, and now the novel approaches proposed by the community are usually specialized to fit only one specific setup. To understand to what extend this specialization is actually necessary, we present UniTrack, a solution to address multiple different tracking tasks within the same framework. All tasks share the same universal appearance model. UniTrack enjoys the following advantages,

Tasks & Framework

tasksframework

Tasks

We classify existing tracking tasks along four axes: (1) Single or multiple targets; (2) Users specify targets or automatic detectors specify targets; (3) Observation formats (bounding box/mask/pose); (2) Class-agnostic or class-specific (i.e. human/vehicles). We mainly expriment on 5 tasks: SOT, VOS, MOT, MOTS, and PoseTrack. Task setups are summarized in the above figure.

Appearance model

An appearance model is the only learnable component in UniTrack. It should provide universal visual representation, and is usually pre-trained on large-scale dataset in supervised or unsupervised manners. Typical examples include ImageNet pre-trained ResNets (supervised), and recent self-supervised models such as MoCo and SimCLR (unsupervised).

Propagation and Association

Two fundamental algorithm building blocks in UniTrack. Both employ features extracted by the appearance model as input. For propagation we adopt exiting methods such as cross correlation, DCF, and mask propation. For association we employ a simple algorithm and develop a novel similarity metric to make full use of the appearance model.

Results

Below we show results of UniTrack with a simple ImageNet Pre-trained ResNet-18 as the appearance model. More results (other tasks/datasets, more visualization) can be found in results.md.

Qualitative results

Single Object Tracking (SOT) on OTB-2015

Video Object Segmentation (VOS) on DAVIS-2017 val split

Multiple Object Tracking (MOT) on MOT-16 test set private detector track (Detections from FairMOT)

Multiple Object Tracking and Segmentation (MOTS) on MOTS challenge test set (Detections from COSTA_st)

Pose Tracking on PoseTrack-2018 val split (Detections from LightTrack)

Quantitative results

Single Object Tracking (SOT) on OTB-2015

Method SiamFC SiamRPN SiamRPN++ UDT* UDT+* LUDT* LUDT+* UniTrack_XCorr* UniTrack_DCF*
AUC 58.2 63.7 69.6 59.4 63.2 60.2 63.9 55.5 61.8

* indicates non-supervised methods

Video Object Segmentation (VOS) on DAVIS-2017 val split

Method SiamMask FeelVOS STM Colorization* TimeCycle* UVC* CRW* VFS* UniTrack*
J-mean 54.3 63.7 79.2 34.6 40.1 56.7 64.8 66.5 58.4

* indicates non-supervised methods

Multiple Object Tracking (MOT) on MOT-16 test set private detector track

Method POI DeepSORT-2 JDE CTrack TubeTK TraDes CSTrack FairMOT* UniTrack*
IDF-1 65.1 62.2 55.8 57.2 62.2 64.7 71.8 72.8 71.8
IDs 805 781 1544 1897 1236 1144 1071 1074 683
MOTA 66.1 61.4 64.4 67.6 66.9 70.1 70.7 74.9 74.7

* indicates methods using the same detections

Multiple Object Tracking and Segmentation (MOTS) on MOTS challenge test set

Method TrackRCNN SORTS PointTrack GMPHD COSTA_st* UniTrack*
IDF-1 42.7 57.3 42.9 65.6 70.3 67.2
IDs 567 577 868 566 421 622
sMOTA 40.6 55.0 62.3 69.0 70.2 68.9

* indicates methods using the same detections

Pose Tracking on PoseTrack-2018 val split

Method MDPN OpenSVAI Miracle KeyTrack LightTrack* UniTrack*
IDF-1 - - - - 52.2 73.2
IDs - - - - 3024 6760
sMOTA 50.6 62.4 64.0 66.6 64.8 63.5

* indicates methods using the same detections

Getting started

Demo

Update log

[2021.6.24]: Start writing docs, please stay tuned!

Acknowledgement

VideoWalk by Allan A. Jabri

SOT code by Zhipeng Zhang

Owner
ZhongdaoWang
Computer Vision, Multi-Object Tracking
ZhongdaoWang
Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)

Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all view

4 Nov 19, 2022
Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.

Pytorch Implementation of Improv RNN Overview This code is a pytorch implementation of the popular Improv RNN model originally implemented by the Mage

Sebastian Murgul 3 Nov 11, 2022
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.

A PyTorch Reproduction of HCN Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Ch

Guyue Hu 210 Dec 31, 2022
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022)

Source code for EquiDock: Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking (ICLR 2022) Please cite "Independent SE(3)-Equivar

Octavian Ganea 154 Jan 02, 2023
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
A developer interface for creating Chat AIs for the Chai app.

ChaiPy A developer interface for creating Chat AIs for the Chai app. Usage Local development A quick start guide is available here, with a minimal exa

Chai 28 Dec 28, 2022
Facilitates implementing deep neural-network backbones, data augmentations

Introduction Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common wa

40 Dec 29, 2022
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a

Amazon 92 Jan 04, 2023
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
Pytorch Implementation of Residual Vision Transformers(ResViT)

ResViT Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper: Onat Dalmaz and Mahmut Yurt

ICON Lab 41 Dec 08, 2022
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022