A library for building and serving multi-node distributed faiss indices.

Overview

About

Distributed faiss index service. A lightweight library that lets you work with FAISS indexes which don't fit into a single server memory. It follows a simple concept of a set of index server processes runing in a complete isolation from each other. All the coordination is done at the client side. This siplified many-vs-many client-to-server relationship architecture is flexible and is specifically designed for research projects vs more complicated solutions that aims mostly at production usage and transactionality support. The data is sharded over several indexes on different servers in RAM. The search client aggregates results from different servers during retrieval. The service is model-independent and operates with supplied embeddings and metadatas.

Features:

  • Multiple clients connect to all servers via RPC.
  • At indexing time: clients balance data across servers. The client sends the next available batch of embeddings to a server that is selected in a round-robin fashion.
  • The index client aggregates results from different servers during retrieval. It queries all the servers and uses a heap to find final results.
  • The API allows to send and store any additional metadata (e.g. raw bpe, language information, etc).
  • Launch servers with submitit.
  • Save/load the index/metadata periodically. Can restore from a stopped index state.
  • Supports several indexes at the same time (e.g. one index per language, or different versions of the same index).
  • The API is trying to optimize for network bandwidth.
  • Flexible index configuration.

Installation

pip install -e .

Testing

python -m unittest discover tests

or

pip install pytest
pytest tests

Code formatting

black --line-length 100 .

Usage

Starting the index servers

distributed-faiss consist of server and client parts which are supposed to be launched as separate services. The set of server processes can be launched either by using its API or the provided lauch tool that uses submitit library that works on clusters with SLURM cluster management and job scheduling system

Launching servers with submitit on SLURM managed clusters

Example:

python scripts/server_launcher.py \
    --log-dir /logs/distr-faiss/ \
    --discovery-config /tmp/discover_config.txt \
    --save-dir $HOME/dfaiss_data \
    --num-servers 64 \
    --num-servers-per-node 32 \
    --timeout-min 4320 \
    --mem-gb 400 \
    --base-port 12033 \
    --partition dev &

Clients can now read /tmp/discover_config.txt to discover servers.

Will launch a job running 64 servers in the background. To view logs (which are verbose but informative) run something like: watch 'tail /logs/distr-faiss/34785924_0_log.err' where the 34785924 will be the slurm job id you are allocated.

Launching servers using API

You can run each index server process indepentently using the following API:

server = IndexServer(global_rank, index_storage_dir)
server.start_blocking(port, load_index=True)

The rank of the server node is needed for reading/writing its own part of the index from/to files. Index are dumped to files for persistent storage. The filesytem path convetion is that there is a shared folder for the entire logical index with each server node working on its own sub-folder inside it. index_storage_dir is the default parameter to store indexes. Can be overrided for each logic index by specifing this attribute in the index configuration object (see client code examples below) When you start a server node on a specific machine and port, you need to write the host, port line to a specific file which can later be used to start a client.

Client API

Each client process is supposed to work with all the server nodes and does all the data balancing among them. Client processes can be run independently of each other and work with the same set of server nodes simulateously.

index_client = IndexClient(discovery_config)

discovery_config is the path to the shared FS file which was used to start the set of servers and contains all (host, port) info to connect to all of them.

Creating an index

Each client & server nodes can work with multiple logical indexes (consider them as fully separate tables in an SQL database). Each logical index can have its own faiss-related configuration, FS location and other parameters which affect its creation logic. Example of creating a simle IVF index:

index_client = IndexClient(discovery_config)
idx_cfg = IndexCfg(
    index_builder_type='ivf_simple',
    dim=128,
    train_num=10000,
    centroids=64,
    metric='dot',
    nprobe=12,
    index_storage_dir='path/to/your/index',
)
index_id = 'your logic index str id'
index_client.create_index(index_id, idx_cfg)

Index configuration

IndexCfg has multiple attributes to set the FAISS index type. List of values for index_builder_type attribute:

  • flat,
  • ivf_simple,
  • knnlm, corresponds to IndexIVFPQ,
  • hnswsq, corresponds to IndexHNSWSQ,
  • ivfsq, corresponds to IndexIVFScalarQuantizer,
  • ivf_gpu is a gpu version of IVF.

Alternatively, if index_builder_type is not specified, one can set faiss_factory just like in FAISS API factory call faiss.index_factory(...)

The following attributes defined the way the index is created:

  • train_num - if specified, sets the number of samples are used for the index training.
  • train_ratio - the same as train_num but as a ratio of total data size.

Data sent for indexing will be aggregated in memory until train_num threshold is exceeded. Please refer to the diagram below about the server and client side interactions and steps.

Client side operations

Once the index has been created, one can send batches of numpy arrays coupled with arbitrarily metadata (should be piackable)

index.add_index_data(index_id, vector_chunk, list_of_metadata)

The index training and creation are done asynchronously with the add() operation the index processing may take a lot of time after all the data are sent. In order to check if all server nodes have finished index building, it is recommended to use the following snippet:

while index.get_state(self.index_id) != IndexState.TRAINED:
    time.sleep(some_time)

Once the index is ready, one can query it:

scores, meta = index.search(query, topk=10, index_id, return_embeddings=False)

query is a query vector batch as a numpy array. return_embeddings enables to return the search result vectors in addition to metadata. If it is set to true, the result tuple will return vectors as the 3-rd element.

Loading Data

The following two commands load a medium sized mmap into distributed-faiss in about 1 minute:

First launch 64 servers in the background

python scripts/server_launcher.py \
    --log-dir /logs/distr-faiss/ \
    --discovery-config /tmp/discover_config.txt \
    --save-dir $HOME/dfaiss_data \
    --num-servers 64 \
    --num-servers-per-node 32 \
    --timeout-min 4320 \
    --mem-gb 400 \
    --base-port 12033 \
    --partition dev &

Once you receive your allocation, load in the data with

python scripts/load_data.py \
    --discover /tmp/discover_config.txt \
    --mmap $HOME/dfaiss_data/random_1000000000_768_fp16.mmap \
    --mmap-size 1000000000 \
    --dimension 768 \
    --dstore-fp16 \
    --cfg scripts/idx_cfg.json \
    --dstore-fp16

modify scripts/load_data.py to load other data formats.

Reference

Reference to cite when using distributed-faiss in a research paper:

@article{DBLP:journals/corr/abs-2112-09924,
  author    = {Aleksandra Piktus and
               Fabio Petroni and
               Vladimir Karpukhin and
               Dmytro Okhonko and
               Samuel Broscheit and
               Gautier Izacard and
               Patrick Lewis and
               Barlas Oguz and
               Edouard Grave and
               Wen{-}tau Yih and
               Sebastian Riedel},
  title     = {The Web Is Your Oyster - Knowledge-Intensive {NLP} against a Very
               Large Web Corpus},
  journal   = {CoRR},
  volume    = {abs/2112.09924},
  year      = {2021},
  url       = {https://arxiv.org/abs/2112.09924},
  eprinttype = {arXiv},
  eprint    = {2112.09924},
  timestamp = {Tue, 04 Jan 2022 15:59:27 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2112-09924.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

You can access the paper here.

License

distributed-faiss is released under the CC-BY-NC 4.0 license. See the LICENSE file for details.

Owner
Meta Research
Meta Research
SW components and demos for visual kinship recognition. An emphasis is put on the FIW dataset-- data loaders, benchmarks, results in summary.

FIW Data Development Kit Table of Contents Introduction Families In the Wild Database Publications Organization To Do License Getting Involved Introdu

Joseph P. Robinson 12 Jun 04, 2022
School of Artificial Intelligence at the Nanjing University (NJU)School of Artificial Intelligence at the Nanjing University (NJU)

F-Principle This is an exercise problem of the digital signal processing (DSP) course at School of Artificial Intelligence at the Nanjing University (

Thyrix 5 Nov 23, 2022
Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)

Towards Implicit Text-Guided 3D Shape Generation Towards Implicit Text-Guided 3D Shape Generation (CVPR2022) Code for the paper [Towards Implicit Text

55 Dec 16, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022
StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation.

3k Jan 08, 2023
Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network

Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of

azad 2 Jul 09, 2022
Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im

Valentin Wolf 86 Nov 16, 2022
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 06, 2023
prior-based-losses-for-medical-image-segmentation

Repository for papers: Benchmark: Effect of Prior-based Losses on Segmentation Performance: A Benchmark Midl: A Surprisingly Effective Perimeter-based

Rosana EL JURDI 9 Sep 07, 2022
Vision Transformer for 3D medical image registration (Pytorch).

ViT-V-Net: Vision Transformer for Volumetric Medical Image Registration keywords: vision transformer, convolutional neural networks, image registratio

Junyu Chen 192 Dec 20, 2022
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Ramin Nakhli 71 Dec 04, 2022
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape

Princeton INSPIRE Research Group 113 Nov 27, 2022
Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Luke Tonin 195 Dec 17, 2022
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and i

yifan liu 147 Dec 03, 2022