Code for the paper "Asymptotics of ℓ2 Regularized Network Embeddings"

Overview

README

Code for the paper Asymptotics of L2 Regularized Network Embeddings.

Requirements

Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0.24.1, tqdm, along with any other packages required for the above three packages.

Code

To run node classification or link prediction experiments, run

python -m code.train_embed [[args]]

or

python -m code.train_embed_link [[args]]

from the command line respectively, where [[args]] correspond to the command line arguments for each function. Note that the scripts expect to run from the parent directory of the code folder; you will need to change the import statements in the associated python files if you move them around. The -h command line argument will display the arguments (with descriptions) of each of the two files.

train_embed.py arguments

short long default help
-h --help show this help message and exit
--dataset Cora Dataset to perform training on. Available options: Cora,CiteSeer,PubMedDiabetes
--emb-size 128 Embedding dimension. Defaults to 128.
--reg-weight 0.0 Weight to use for L2 regularization. If norm_reg is True, then reg_weight/num_of_nodes is used instead.
--norm-reg Boolean for whether to normalize the L2 regularization weight by the number of nodes in the graph. Defaults to false.
--method node2vec Algorithm to perform training on. Available options: node2vec,GraphSAGE,GCN,DGI
--verbose 1 Level of verbosity. Defaults to 1.
--epochs 5 Number of epochs through the dataset to be used for training.
--optimizer Adam Optimization algorithm to use for training.
--learning-rate 0.001 Learning rate to use for optimization.
--batch-size 64 Batch size used for training.
--train-split [0.01, 0.025, 0.05] Percentage(s) to use for the training split when using the learned embeddings for downstream classification tasks.
--train-split-num 25 Decides the number of random training/test splits to use for evaluating performance. Defaults to 50.
--output-fname None If not None, saves the hyperparameters and testing results to a .json file with filename given by the argument.
--node2vec-p 1.0 Hyperparameter governing probability of returning to source node.
--node2vec-q 1.0 Hyperparameter governing probability of moving to a node away from the source node.
--node2vec-walk-number 50 Number of walks used to generate a sample for node2vec.
--node2vec-walk-length 5 Walk length to use for node2vec.
--dgi-sampler fullbatch Specifies either a fullbatch or a minibatch sampling scheme for DGI.
--gcn-activation ['relu'] Determines the activations of each layer within a GCN. Defaults to a single layer with relu activation.
--graphSAGE-aggregator mean Specifies the aggreagtion rule used in GraphSAGE. Defaults to mean pooling.
--graphSAGE-nbhd-sizes [10, 5] Specify multiple neighbourhood sizes for sampling in GraphSAGE. Defaults to [10, 5].
--tensorboard If toggles, saves Tensorboard logs for debugging purposes.
--visualize-embeds None If specified with a directory, saves an image of a TSNE 2D projection of the learned embeddings at the specified directory.
--save-spectrum None If specifies, saves the spectrum of the learned embeddings output by the algorithm.

train_embed_link.py arguments

short long default help
-h --help show this help message and exit
--dataset Cora Dataset to perform training on. Available options: Cora,CiteSeer,PubMedDiabetes
--emb-size 128 Embedding dimension. Defaults to 128.
--reg-weight 0.0 Weight to use for L2 regularization. If norm_reg is True, then reg_weight/num_of_nodes is used instead.
--norm-reg Boolean for whether to normalize the L2 regularization weight by the number of nodes in the graph. Defaults to false.
--method node2vec Algorithm to perform training on. Available options: node2vec,GraphSAGE,GCN,DGI
--verbose 1 Level of verbosity. Defaults to 1.
--epochs 5 Number of epochs through the dataset to be used for training.
--optimizer Adam Optimization algorithm to use for training.
--learning-rate 0.001 Learning rate to use for optimization.
--batch-size 64 Batch size used for training.
--test-split 0.1 Split of edge/non-edge set to be used for testing.
--output-fname None If not None, saves the hyperparameters and testing results to a .json file with filename given by the argument.
--node2vec-p 1.0 Hyperparameter governing probability of returning to source node.
--node2vec-q 1.0 Hyperparameter governing probability of moving to a node away from the source node.
--node2vec-walk-number 50 Number of walks used to generate a sample for node2vec.
--node2vec-walk-length 5 Walk length to use for node2vec.
--gcn-activation ['relu'] Specifies layers in terms of their output activation (either relu or linear), with the number of arguments determining the length of the GCN. Defaults to a single layer with relu activation.
--graphSAGE-aggregator mean Specifies the aggreagtion rule used in GraphSAGE. Defaults to mean pooling.
--graphSAGE-nbhd-sizes [10, 5] Specify multiple neighbourhood sizes for sampling in GraphSAGE. Defaults to [25, 10].
Owner
Andrew Davison
Andrew Davison
Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)

Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require

Hongxin Wei 12 Dec 07, 2022
First-Order Probabilistic Programming Language

FOPPL: A First-Order Probabilistic Programming Language This is an implementation of FOPPL, an S-expression based probabilistic programming language d

Renato Costa 23 Dec 20, 2022
Author's PyTorch implementation of TD3 for OpenAI gym tasks

Addressing Function Approximation Error in Actor-Critic Methods PyTorch implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3). If y

Scott Fujimoto 1.3k Dec 25, 2022
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urb

Yu Tian 117 Jan 03, 2023
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
It's final year project of Diploma Engineering. This project is based on Computer Vision.

Face-Recognition-Based-Attendance-System It's final year project of Diploma Engineering. This project is based on Computer Vision. Brief idea about ou

Neel 10 Nov 02, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neu

Filip Molcik 38 Dec 17, 2022
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
This tutorial repository is to introduce the functionality of KGTK to first-time users

Welcome to the KGTK notebook tutorial The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledg

USC ISI I2 58 Dec 21, 2022
NOMAD - A blackbox optimization software

################################################################################### #

Blackbox Optimization 78 Dec 29, 2022
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
An Open-Source Tool for Automatic Disease Diagnosis..

OpenMedicalChatbox An Open-Source Package for Automatic Disease Diagnosis. Overview Due to the lack of open source for existing RL-base automated diag

8 Nov 08, 2022
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

LightOn 69 Dec 22, 2022
Distilled coarse part of LoFTR adapted for compatibility with TensorRT and embedded divices

Coarse LoFTR TRT Google Colab demo notebook This project provides a deep learning model for the Local Feature Matching for two images that can be used

Kirill 46 Dec 24, 2022
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

cckuailong 208 Dec 24, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022