PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

Overview

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning" by Jie Lei, Liwei Wang, Yelong Shen, Dong Yu, Tamara L. Berg, and Mohit Bansal

Generating multi-sentence descriptions for videos is one of the most challenging captioning tasks due to its high requirements for not only visual relevance but also discourse-based coherence across the sentences in the paragraph. Towards this goal, we propose a new approach called Memory-Augmented Recurrent Transformer (MART), which uses a memory module to augment the transformer architecture. The memory module generates a highly summarized memory state from the video segments and the sentence history so as to help better prediction of the next sentence (w.r.t. coreference and repetition aspects), thus encouraging coherent paragraph generation. Extensive experiments, human evaluations, and qualitative analyses on two popular datasets ActivityNet Captions and YouCookII show that MART generates more coherent and less repetitive paragraph captions than baseline methods, while maintaining relevance to the input video events.

Related works:

Getting started

Prerequisites

  1. Clone this repository
# no need to add --recursive as all dependencies are copied into this repo.
git clone https://github.com/jayleicn/recurrent-transformer.git
cd recurrent-transformer
  1. Prepare feature files

Download features from Google Drive: rt_anet_feat.tar.gz (39GB) and rt_yc2_feat.tar.gz (12GB). These features are repacked from features provided by densecap.

mkdir video_feature && cd video_feature
tar -xf path/to/rt_anet_feat.tar.gz 
tar -xf path/to/rt_yc2_feat.tar.gz 
  1. Install dependencies
  • Python 2.7
  • PyTorch 1.1.0
  • nltk
  • easydict
  • tqdm
  • tensorboardX
  1. Add project root to PYTHONPATH
source setup.sh

Note that you need to do this each time you start a new session.

Training and Inference

We give examples on how to perform training and inference with MART.

  1. Build Vocabulary
bash scripts/build_vocab.sh DATASET_NAME

DATASET_NAME can be anet for ActivityNet Captions or yc2 for YouCookII.

  1. MART training

The general training command is:

bash scripts/train.sh DATASET_NAME MODEL_TYPE

MODEL_TYPE can be one of [mart, xl, xlrg, mtrans, mart_no_recurrence], see details below.

MODEL_TYPE Description
mart Memory Augmented Recurrent Transformer
xl Transformer-XL
xlrg Transformer-XL with recurrent gradient
mtrans Vanilla Transformer
mart_no_recurrence mart with recurrence disabled

To train our MART model on ActivityNet Captions:

bash scripts/train.sh anet mart

Training log and model will be saved at results/anet_re_*.
Once you have a trained model, you can follow the instructions below to generate captions.

  1. Generate captions
bash scripts/translate_greedy.sh anet_re_* val

Replace anet_re_* with your own model directory name. The generated captions are saved at results/anet_re_*/greedy_pred_val.json

  1. Evaluate generated captions
bash scripts/eval.sh anet val results/anet_re_*/greedy_pred_val.json

The results should be comparable with the results we present at Table 2 of the paper. E.g., [email protected] 10.33; [email protected] 5.18.

Citations

If you find this code useful for your research, please cite our paper:

@inproceedings{lei2020mart,
  title={MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning},
  author={Lei, Jie and Wang, Liwei and Shen, Yelong and Yu, Dong and Berg, Tamara L and Bansal, Mohit},
  booktitle={ACL},
  year={2020}
}

Others

This code used resources from the following projects: transformers, transformer-xl, densecap, OpenNMT-py.

Contact

jielei [at] cs.unc.edu

Owner
Jie Lei 雷杰
UNC CS PhD student, vision+language.
Jie Lei 雷杰
SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts

[arXiv] The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, wh

ZOZO, Inc. 138 Nov 24, 2022
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection

Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru

Siddhant Kumar 2 Feb 04, 2022
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)

Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all view

4 Nov 19, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
Development of IP code based on VIPs and AADM

Sparse Implicit Processes In this repository we include the two different versions of the SIP code developed for the article Sparse Implicit Processes

1 Aug 22, 2022
Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Scribble-Supervised LiDAR Semantic Segmentation Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORA

102 Dec 25, 2022
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im

Phil Wang 121 Dec 30, 2022
Software associated to AAAI paper "Planning with Biological Neurons and Synapses"

jBrain Software associated with the AAAI 2022 paper Francesco D'Amore, Daniel Mitropolsky, Pierluigi Crescenzi, Emanuele Natale, Christos H. Papadimit

Pierluigi Crescenzi 1 Apr 10, 2022
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Code, pre-trained models and saliency results for the paper "Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images".

Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB This repository is the official implementation of the paper. Our results comming soon in

Xiaoqiang Wang 8 May 22, 2022
BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构

BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构。 文档地址:https://basecls.readthedocs.io 安装 安装环境 BaseCls 需要 Python = 3.6。 BaseCls 依赖 M

MEGVII Research 28 Dec 23, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Debabrata Mahapatra 40 Dec 24, 2022
Crowd-sourced Annotation of Human Motion.

Motion Annotation Tool Live: https://motion-annotation.humanoids.kit.edu Paper: The KIT Motion-Language Dataset Installation Start by installing all P

Matthias Plappert 4 May 25, 2020
A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models

This repository contains a collection of resources and papers on Diffusion Models and Score-based Models. If there are any missing valuable resources

5.1k Jan 08, 2023
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022
Source code for GNN-LSPE (Graph Neural Networks with Learnable Structural and Positional Representations)

Graph Neural Networks with Learnable Structural and Positional Representations Source code for the paper "Graph Neural Networks with Learnable Structu

Vijay Prakash Dwivedi 180 Dec 22, 2022
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022