DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

Overview

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng, Wenjun Zhang

''Learn a digraph with matrix-valued edge weight for multi-agent perception.''

News

[2021-11] Our paper is availale on arxiv.

[2021-10] Our dataset V2X-Sim 1.0 is availale here.

[2021-09] 🔥 DiscoNet is accepted at NeurIPS 2021.

Abstract

To promote better performance-bandwidth trade-off for multi-agent perception, we propose a novel distilled collaboration graph (DiscoGraph) to model trainable, pose-aware, and adaptive collaboration among agents. Our key novelties lie in two aspects. First, we propose a teacher-student framework to train DiscoGraph via knowledge distillation. The teacher model employs an early collaboration with holistic-view inputs; the student model is based on intermediate collaboration with single-view inputs. Our framework trains DiscoGraph by constraining post-collaboration feature maps in the student model to match the correspondences in the teacher model. Second, we propose a matrix-valued edge weight in DiscoGraph. In such a matrix, each element reflects the inter-agent attention at a specific spatial region, allowing an agent to adaptively highlight the informative regions. During inference, we only need to use the student model named as the distilled collaboration network (DiscoNet). Attributed to the teacher-student framework, multiple agents with the shared DiscoNet could collaboratively approach the performance of a hypothetical teacher model with a holistic view. Our approach is validated on V2X-Sim 1.0, a large-scale multi-agent perception dataset that we synthesized using CARLA and SUMO co-simulation. Our quantitative and qualitative experiments in multi-agent 3D object detection show that DiscoNet could not only achieve a better performance-bandwidth trade-off than the state-of-the-art collaborative perception methods, but also bring more straightforward design rationale. Our code is available on https://github.com/ai4ce/DiscoNet.

Installation

Requirements

  • Linux (tested on Ubuntu 20.04)
  • Python 3.7
  • PyTorch 1.8.0
  • CUDA 11.2

Create Anaconda Environment

conda env create -f disco.yaml
conda activate disco

Dataset Preparation

Please download the training/val set V2X-Sim-1.0-trainval.

NOTICE: The training/val data generation script is currently not avaliable, you can either use the raw data on V2X-Sim 1.0 or the provided training/val set in your experiments. Please send us an access request with your affiliation and role, and we will grant the access.

Training Commands

python train_codet.py [--data PATH_TO_DATA] [--bound BOUND] [--com COM]
               [--batch BATCH] [--nepoch NEPOCH] [--lr LEARNING_RATE] 
               [--kd_flag KD_FLAG] [--resume_teacher PATH_TO_TRACHER_MODEL]
--bound BOUND       
                    Input data to the collaborative perception model. Options: "lowerbound" for 
                    no-collaboration or intermediate-collaboration, "upperbound" for early collaboration.
--com COM   
                    Intermediate collaboration strategy. Options: "disco" for our DiscoNet,
                    "v2v/when2com//sum/mean/max/cat/agent" for other methods, '' for early or no collaboration.
--data PATH_TO_DATA         
                    Set as YOUR_PATH_TO_DATASET/V2X-Sim-1.0-trainval/train
--kd_flag FLAG
                    Whether to use knowledge distillation. 1 for true and 0 for false.
--resume_teacher PATH_TO_TRACHER_MODEL 
                    The pretrained early-collaboration-based teacher model.

Evaluation Commands

python test_codet.py [--data PATH_TO_DATA] [--bound BOUND] [--com COM] [--resume PATH_TO_YOUR_MODEL]
--bound BOUND       
                    Input data to the collaborative perception model. Options: "lowerbound" for 
                    no-collaboration or intermediate-collaboration, "upperbound" for early collaboration.
--com COM   
                    Intermediate collaboration strategy. Options: "disco" for our DiscoNet,
                    "v2v/when2com//sum/mean/max/cat/agent" for other methods, '' for early or no collaboration.
--data PATH_TO_DATA         
                    Set as YOUR_PATH_TO_DATASET/V2X-Sim-1.0-trainval/test
--resume PATH_TO_YOUR_MODEL 
                    The trained model for evaluation.

The teacher model can be downloaded here, and our DiscoNet model can can be downloaded here.

Acknowledgment

This project is not possible without the following great codebases.

Citation

If you find V2X-Sim 1.0 or DiscoNet useful in your research, please cite our paper.

@InProceedings{Li_2021_NeurIPS,
    title = {Learning Distilled Collaboration Graph for Multi-Agent Perception},
    author = {Li, Yiming and Ren, Shunli and Wu, Pengxiang and Chen, Siheng and Feng, Chen and Zhang, Wenjun},
    booktitle = {Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS 2021)},
    year = {2021}
}
Owner
Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU
Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU
Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective

Unofficial pytorch implementation of the paper "Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective"

16 Nov 21, 2022
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
The backbone CSPDarkNet of YOLOX.

YOLOX-Backbone The backbone CSPDarkNet of YOLOX. In this project, you can enjoy: CSPDarkNet-S CSPDarkNet-M CSPDarkNet-L CSPDarkNet-X CSPDarkNet-Tiny C

Jianhua Yang 9 Aug 22, 2022
(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML

54 Aug 04, 2022
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with ONNX, TensorRT, ncnn, and OpenVINO supported.

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

7.7k Jan 03, 2023
This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of lectures and exercises

2021-Deep-learning This tutorial aims to learn the basics of deep learning by hands, and master the basics through combination of paper and exercises.

108 Feb 24, 2022
PyTorch implementation of MICCAI 2018 paper "Liver Lesion Detection from Weakly-labeled Multi-phase CT Volumes with a Grouped Single Shot MultiBox Detector"

Grouped SSD (GSSD) for liver lesion detection from multi-phase CT Note: the MICCAI 2018 paper only covers the multi-phase lesion detection part of thi

Sang-gil Lee 36 Oct 12, 2022
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
Unsupervised Image to Image Translation with Generative Adversarial Networks

Unsupervised Image to Image Translation with Generative Adversarial Networks Paper: Unsupervised Image to Image Translation with Generative Adversaria

Hao 71 Oct 30, 2022
Small little script to scrape, parse and check for active tor nodes. Can be used as proxies.

TorScrape TorScrape is a small but useful script made in python that scrapes a website for active tor nodes, parse the html and then save the nodes in

5 Dec 04, 2022
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
A model which classifies reviews as positive or negative.

SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w

Rishabh Bali 2 Feb 09, 2022
TensorFlow implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Aritra Roy Gosthipaty 23 Dec 24, 2022
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
PlenOctree Extraction algorithm

PlenOctrees_NeRF-SH This is an implementation of the Paper PlenOctrees for Real-time Rendering of Neural Radiance Fields. Not only the code provides t

49 Nov 05, 2022