Official code for "EagerMOT: 3D Multi-Object Tracking via Sensor Fusion" [ICRA 2021]

Overview

EagerMOT: 3D Multi-Object Tracking via Sensor Fusion

Read our ICRA 2021 paper here.

Check out the 3 minute video for the quick intro or the full presentation video for more details.

This repo contains code for our ICRA 2021 paper. Benchmark results can be fully reproduced with minimal work, only need to edit data location variables. If desired, our ablation results can also be reproduced by need more adjustments. An earlier version of this paper has also appeared as a short 4-page paper at the CVPR 2020 MOTChallenge Workshop.


Improve your online 3D multi-object tracking performance by using 2D detections to support tracking when 3D association fails. The method adds minimal overhead, does not rely on dedicated hardware on any particular sensor setup. The current Python implementation run at 90 FPS on KITTI data and can definitely be optimized for actual deployment.

The framework is flexible to work with any 3D/2D detection sources (we used only off-the-shelf models) and can be extended to other tracking-related tasks, e.g. MOTS.

Visual

Abstract

Multi-object tracking (MOT) enables mobile robots to perform well-informed motion planning and navigation by localizing surrounding objects in 3D space and time. Existing methods rely on depth sensors (e.g., LiDAR) to detect and track targets in 3D space, but only up to a limited sensing range due to the sparsity of the signal. On the other hand, cameras provide a dense and rich visual signal that helps to localize even distant objects, but only in the image domain. In this paper, we propose EagerMOT, a simple tracking formulation that eagerly integrates all available object observations from both sensor modalities to obtain a well-informed interpretation of the scene dynamics. Using images, we can identify distant incoming objects, while depth estimates allow for precise trajectory localization as soon as objects are within the depth-sensing range. With EagerMOT, we achieve state-of-the-art results across several MOT tasks on the KITTI and NuScenes datasets.

Diagram

Benchmark results

Our current standings on KITTI for 2D MOT on the official leaderboard. For 2D MOTS, see this page. Our current standings on NuScenes for 3D MOT on the official leaderboard.

How to set up

Download official NuScenes and KITTI data if you plan on running tracking on them. Change the paths to that data in configs/local_variables.py.

Also set a path to a working directory for each dataset - all files produced by EagerMOT will be saved in that directory, e.g. fused instances, tracking results. A subfolder will be created for each dataset for each split, for example, if the working directory is /workspace/kitti, then /workspace/kitti/training and /workspace/kitti/testing will be used for each data split. The split to be run is also specified in local_variables.py. For NuScenes, the version of the dataset (VERSION = "v1.0-trainval") also has to be modified in run_tracking.py when switching between train/test.

If running on KITTI, download ego_motion.zip from the drive and unzip it into the KITTI working directory specified above (either training or testing). NuScenes data is already in world coordinates, so no need to ego motion estimates.

Download 3D and 2D detections, which ones to download depends on what you want to run:

Our benchmark results were achieved with PointGNN + (MOTSFusion+RRC) for KITTI and CenterPoint + MMDetectionCascade for NuScenes.

Unzip detections anywhere you want and provide the path to the root method folder in the inputs/utils.py file.

Set up a virtual environment

  • if using conda:
conda create --name <env> --file requirements_conda.txt
  • if using pip:
python3 -m venv env
source env/bin/activate
pip install -r requirements_pip.txt

How to run

See run_tracking.py for the code that launches tracking. Modify which function that file calls, depending on which dataset you want to run. See nearby comments for instructions.

if __name__ == "__main__":
    # choose which one to run, comment out the other one
    run_on_nuscenes()  
    run_on_kitti()

Start the script with $python run_tracking.py. Check the code itself to see what is being called. I recommend following function calls to explore how the code is structured.

Overall, the code was written to allow customization and easy experimentation instead of optimizing for performance.

Soon, I am looking to extract the data loading module and push my visualization code into a separate repo to use for other projects.

Please cite our paper if you find the code useful

@inproceedings{Kim21ICRA,
  title     = {EagerMOT: 3D Multi-Object Tracking via Sensor Fusion},
  author    = {Kim, Aleksandr, O\v{s}ep, Aljo\v{s}a and Leal-Taix{'e}, Laura},
  booktitle = {IEEE International Conference on Robotics and Automation (ICRA)},
  year      = {2021}
}
Owner
Aleksandr Kim
Aleksandr Kim
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
This repository contains a pytorch implementation of "StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision".

StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision | Project Page | Paper | This repository contains a pytorch implementation of "St

87 Dec 09, 2022
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline.

TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline

193 Dec 22, 2022
Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization Note This codebase accompanies paper Learning Nearly Decomposable Va

Tonghan Wang 69 Nov 26, 2022
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces. User Guide archABM is a fast and open source agent-

Vicomtech 10 Dec 05, 2022
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

(CVPR 2022) TokenCut Pytorch implementation of Tokencut: Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut Yangtao W

YANGTAO WANG 200 Jan 02, 2023
PyTorch-based framework for Deep Hedging

PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien

139 Dec 30, 2022
FAST-RIR: FAST NEURAL DIFFUSE ROOM IMPULSE RESPONSE GENERATOR

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

Anton Jeran Ratnarajah 89 Dec 22, 2022
OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.

English | 简体中文 Documentation: https://mmtracking.readthedocs.io/ Introduction MMTracking is an open source video perception toolbox based on PyTorch.

OpenMMLab 2.7k Jan 08, 2023
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories This repo is the code release of EMNLP 2021 con

12 Nov 22, 2022
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022
This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX

The goal of Project CodeNet is to provide the AI-for-Code research community with a large scale, diverse, and high quality curated dataset to drive innovation in AI techniques.

International Business Machines 1.2k Jan 04, 2023