Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Overview

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Introduction

Graph Neural Networks (GNNs) have demonstrated superior performance in node classification or regression tasks, and have emerged as the state of the art in several applications. However, (inductive) GNNs require the edge connectivity structure of nodes to be known beforehand to work well. This is often not the case in several practical applications where the node degrees have power-law distributions, and nodes with a few connections might have noisy edges. An extreme case is the strict cold start (SCS) problem, where there is no neighborhood information available, forcing prediction models to rely completely on node features only. To study the viability of using inductive GNNs to solve the SCS problem, we introduce feature-contribution ratio (FCR), a metric to quantify the contribution of a node's features and that of its neighborhood in predicting node labels, and use this new metric as a model selection reward. We then propose Cold Brew, a new method that generalizes GNNs better in the SCS setting compared to pointwise and graph-based models, via a distillation approach. We show experimentally how FCR allows us to disentangle the contributions of various components of graph datasets, and demonstrate the superior performance of Cold Brew on several public benchmarks

Motivation

Long tail distribution is ubiquitously existed in large scale graph mining tasks. In some applications, some cold start nodes have too few or no neighborhood in the graph, which make graph based methods sub-optimal due to insufficient high quality edges to perform message passing.

gnns

gnns

Method

We improve teacher GNN with Structural Embedding, and propose student MLP model with latent neighborhood discovery step. We also propose a metric called FCR to judge the difficulty in cold start generalization.

gnns

coldbrew

Installation Guide

The following commands are used for installing key dependencies; other can be directly installed via pip or conda. A full redundant dependency list is in requirements.txt

pip install dgl
pip3 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
pip install torch-geometric

Training Guide

In options/base_options.py, a full list of useable args is present, with default arguments and candidates initialized.

Comparing between traditional GCN (optimized with Initial/Jumping/Dense/PairNorm/NodeNorm/GroupNorm/Dropouts) and Cold Brew's GNN (optimized with Structural Embedding)

Train optimized traditional GNN:

python main.py --dataset='Cora' --train_which='TeacherGNN' --whetherHasSE='000' --want_headtail=1 --num_layers=2 --use_special_split=1 Result: 84.15

python main.py --dataset='Citeseer' --train_which='TeacherGNN' --whetherHasSE='000' --want_headtail=1 --num_layers=2 --use_special_split=1 Result: 71.00

python main.py --dataset='Pubmed' --train_which='TeacherGNN' --whetherHasSE='000' --want_headtail=1 --num_layers=2 --use_special_split=1 Result: 78.2

Training Cold Brew's Teacher GNN:

python main.py --dataset='Cora' --train_which='TeacherGNN' --whetherHasSE='100' --se_reg=32 --want_headtail=1 --num_layers=2 --use_special_split=1 Result: 85.10

python main.py --dataset='Citeseer' --train_which='TeacherGNN' --whetherHasSE='100' --se_reg=0.5 --want_headtail=1 --num_layers=2 --use_special_split=1 Result: 71.40

python main.py --dataset='Pubmed' --train_which='TeacherGNN' --whetherHasSE='111' --se_reg=0.5 --want_headtail=1 --num_layers=2 --use_special_split=1 Result: 78.2

Comparing between MLP models:

Training naive MLP:

python main.py --dataset='Cora' --train_which='StudentBaseMLP' Result on isolation split: 63.92

Training GraphMLP:

python main.py --dataset='Cora' --train_which='GraphMLP' Result on isolation split: 68.63

Training Cold Brew's MLP:

python main.py --dataset='Cora' --train_which="SEMLP" --SEMLP_topK_2_replace=3 --SEMLP_part1_arch="2layer" --dropout_MLP=0.5 --studentMLP__opt_lr='torch.optim.Adam&0.005' Result on isolation split: 69.57

Hyperparameter meanings

--whetherHasSE: whether cold brew's TeacherGNN has structural embedding. The first ‘1’ means structural embedding exist in first layer; second ‘1’ means structural embedding exist in every middle layers; third ‘1’ means last layer.

--se_reg: regularization coefficient for cold brew teacher model's structural embedding.

--SEMLP_topK_2_replace: the number of top K best virtual neighbor nodes.

--manual_assign_GPU: set the GPU ID to train on. default=-9999, which means to dynamically choose GPU with most remaining memory.

Adaptation Guide

How to leverage this repo to train on other datasets:

In trainer.py, put any new graph dataset (node classification) under load_data() and return it.

what to load: return a dataset, which is a namespace, called 'data', data.x: 2D tensor, on cpu; shape = [N_nodes, dim_feature]. data.y: 1D tensor, on cpu; shape = [N_nodes]; values are integers, indicating the class of nodes. data.edge_index: tensor: [2, N_edge], cpu; edges contain self loop. data.train_mask: bool tensor, shape = [N_nodes], indicating the training node set. Template class for the 'data':

class MyDataset(torch_geometric.data.data.Data):
    def __init__(self):
        super().__init__()

Citation

comming soon.
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

PointRCNN PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud Code release for the paper PointRCNN:3D Object Proposal Generation a

Shaoshuai Shi 1.5k Dec 27, 2022
:fire: 2D and 3D Face alignment library build using pytorch

Face Recognition Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D an

Adrian Bulat 6k Dec 31, 2022
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation [Project] [Paper] [arXiv] [Home] Official implementation of FastFCN:

Wu Huikai 815 Dec 29, 2022
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
Code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation

PiecewiseLinearTimeSeriesApproximation code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation, SIAM Data Mining 20

Daniel Lemire 21 Oct 27, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Egor Orel 1 Dec 10, 2022
Crowd-sourced Annotation of Human Motion.

Motion Annotation Tool Live: https://motion-annotation.humanoids.kit.edu Paper: The KIT Motion-Language Dataset Installation Start by installing all P

Matthias Plappert 4 May 25, 2020
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022
LibFewShot: A Comprehensive Library for Few-shot Learning.

LibFewShot Make few-shot learning easy. Supported Methods Meta MAML(ICML'17) ANIL(ICLR'20) R2D2(ICLR'19) Versa(NeurIPS'18) LEO(ICLR'19) MTL(CVPR'19) M

<a href=[email protected]&L"> 603 Jan 05, 2023
FMA: A Dataset For Music Analysis

FMA: A Dataset For Music Analysis Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. International Society for Music Information

Michaël Defferrard 1.8k Dec 29, 2022
Maximum Spatial Perturbation for Image-to-Image Translation (Official Implementation)

MSPC for I2I This repository is by Yanwu Xu and contains the PyTorch source code to reproduce the experiments in our CVPR2022 paper Maximum Spatial Pe

51 Dec 14, 2022
Official Implementation of DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation

DAFormer: Improving Network Architectures and Training Strategies for Domain-Adaptive Semantic Segmentation [Arxiv] [Paper] As acquiring pixel-wise an

Lukas Hoyer 305 Dec 29, 2022
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022