Implementation of Shape Generation and Completion Through Point-Voxel Diffusion

Related tags

Deep LearningPVD
Overview

Shape Generation and Completion Through Point-Voxel Diffusion

Project | Paper

Implementation of Shape Generation and Completion Through Point-Voxel Diffusion

Linqi Zhou, Yilun Du, Jiajun Wu

Requirements:

Make sure the following environments are installed.

python==3.6
pytorch==1.4.0
torchvision==0.5.0
cudatoolkit==10.1
matplotlib==2.2.5
tqdm==4.32.1
open3d==0.9.0
trimesh=3.7.12
scipy==1.5.1

Install PyTorchEMD by

cd metrics/PyTorchEMD
python setup.py install
cp build/**/emd_cuda.cpython-36m-x86_64-linux-gnu.so .

The code was tested on Unbuntu with Titan RTX.

Data

For generation, we use ShapeNet point cloud, which can be downloaded here.

For completion, we use ShapeNet rendering provided by GenRe. We provide script convert_cam_params.py to process the provided data.

For training the model on shape completion, we need camera parameters for each view which are not directly available. To obtain these, simply run

$ python convert_cam_params.py --dataroot DATA_DIR --mitsuba_xml_root XML_DIR

which will create ..._cam_params.npz in each provided data folder for each view.

Pretrained models

Pretrained models can be downloaded here.

Training:

$ python train_generation.py --category car|chair|airplane

Please refer to the python file for optimal training parameters.

Testing:

$ python train_generation.py --category car|chair|airplane --model MODEL_PATH

Results

Some generation and completion results are as follows.

Multimodal completion on a ShapeNet chair.

Multimodal completion on PartNet.

Multimodal completion on two Redwood 3DScan chairs.

Reference

@inproceedings{Zhou_2021_ICCV,
    author    = {Zhou, Linqi and Du, Yilun and Wu, Jiajun},
    title     = {3D Shape Generation and Completion Through Point-Voxel Diffusion},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {5826-5835}
}

Acknowledgement

For any questions related to codes and experiment setting, please contact Linqi Zhou and Yilun Du.

Owner
Linqi Zhou
Ph.D. student @ Stanford University
Linqi Zhou
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Tensorflow- MaskRCNN Steps git clone https://github.com/amalaj7/TFOD-MASKRCNN.gi

Amal Ajay 2 Jan 18, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
Federated Learning - Including common test models for federated learning, like CNN, Resnet18 and lstm, controlled by different parser

Federated_Learning 💻 This projest include common test models for federated lear

TianyuQi 10 Dec 11, 2022
Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions

README Repository containing the code for the paper "Safe Model-Based Reinforcement Learning using Robust Control Barrier Functions". Specifically, an

Yousef Emam 13 Nov 24, 2022
NBEATSx: Neural basis expansion analysis with exogenous variables

NBEATSx: Neural basis expansion analysis with exogenous variables We extend the NBEATS model to incorporate exogenous factors. The resulting method, c

Cristian Challu 100 Dec 31, 2022
[CVPR 2021] Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans Introduction We introduce the task of dense captioning in 3D scans from commodity RGB-D sensor

Dave Z. Chen 79 Nov 07, 2022
Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
eXPeditious Data Transfer

xpdt: eXPeditious Data Transfer About xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing the

Gianni Tedesco 3 Jan 06, 2022
3D Pose Estimation for Vehicles

3D Pose Estimation for Vehicles Introduction This work generates 4 key-points and 2 key-edges from vertices and edges of vehicles as ground truth. The

Jingyi Wang 1 Nov 01, 2021
Code for technical report "An Improved Baseline for Sentence-level Relation Extraction".

RE_improved_baseline Code for technical report "An Improved Baseline for Sentence-level Relation Extraction". Requirements torch = 1.8.1 transformers

Wenxuan Zhou 74 Nov 29, 2022
StellarGraph - Machine Learning on Graphs

StellarGraph Machine Learning Library StellarGraph is a Python library for machine learning on graphs and networks. Table of Contents Introduction Get

S T E L L A R 2.6k Jan 05, 2023
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
An implementation of based on pytorch and mmcv

FisherPruning-Pytorch An implementation of Group Fisher Pruning for Practical Network Compression based on pytorch and mmcv Main Functions Pruning f

Peng Lu 15 Dec 17, 2022
(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

RDPNet IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation PyTorch training and testing code are available.

Yu-Huan Wu 41 Oct 21, 2022
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
AutoDeeplab / auto-deeplab / AutoML for semantic segmentation, implemented in Pytorch

AutoML for Image Semantic Segmentation Currently this repo contains the only working open-source implementation of Auto-Deeplab which, by the way out-

AI Necromancer 299 Dec 17, 2022