PFLD pytorch Implementation

Overview

PFLD-pytorch

Implementation of PFLD A Practical Facial Landmark Detector by pytorch.

1. install requirements

pip3 install -r requirements.txt

2. Datasets

  • WFLW Dataset Download

Wider Facial Landmarks in-the-wild (WFLW) is a new proposed face dataset. It contains 10000 faces (7500 for training and 2500 for testing) with 98 fully manual annotated landmarks.

  1. WFLW Training and Testing images [Google Drive] [Baidu Drive]
  2. WFLW Face Annotations
  3. Unzip above two packages and put them on ./data/WFLW/
  4. move Mirror98.txt to WFLW/WFLW_annotations
$ cd data 
$ python3 SetPreparation.py

3. training & testing

training :

$ python3 train.py

use tensorboard, open a new terminal

$ tensorboard  --logdir=./checkpoint/tensorboard/

testing:

$ python3 test.py

4. results:

5. pytorch -> onnx -> ncnn

Pytorch -> onnx

python3 pytorch2onnx.py

onnx -> ncnn

how to build :https://github.com/Tencent/ncnn/wiki/how-to-build

cd ncnn/build/tools/onnx
./onnx2ncnn pfld-sim.onnx pfld-sim.param pfld-sim.bin

Now you can use pfld-sim.param and pfld-sim.bin in ncnn:

ncnn::Net pfld;
pfld.load_param("path/to/pfld-sim.param");
pfld.load_model("path/to/pfld-sim.bin");

cv::Mat img = cv::imread(imagepath, 1);
ncnn::Mat in = ncnn::Mat::from_pixels_resize(img.data, ncnn::Mat::PIXEL_BGR, img.cols, img.rows, 112, 112);
const float norm_vals[3] = {1/255.f, 1/255.f, 1/255.f};
in.substract_mean_normalize(0, norm_vals);

ncnn::Extractor ex = pfld.create_extractor();
ex.input("input_1", in);
ncnn::Mat out;
ex.extract("415", out);

6. reference:

PFLD: A Practical Facial Landmark Detector https://arxiv.org/pdf/1902.10859.pdf

Tensorflow Implementation: https://github.com/guoqiangqi/PFLD

Owner
zhaozhichao
Stay hungry, Stay foolish
zhaozhichao
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
Share a benchmark that can easily apply reinforcement learning in Job-shop-scheduling

Gymjsp Gymjsp is an open source Python library, which uses the OpenAI Gym interface for easily instantiating and interacting with RL environments, and

134 Dec 08, 2022
A tool to visualise the results of AlphaFold2 and inspect the quality of structural predictions

AlphaFold Analyser This program produces high quality visualisations of predicted structures produced by AlphaFold. These visualisations allow the use

Oliver Powell 3 Nov 13, 2022
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023
[ACM MM 2021] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)

Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation) [arXiv] [paper] @inproceedings{hou2021multiview, title={Multiview

Yunzhong Hou 27 Dec 13, 2022
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
Repository for the "Gotta Go Fast When Generating Data with Score-Based Models" paper

Gotta Go Fast When Generating Data with Score-Based Models This repo contains the official implementation for the paper Gotta Go Fast When Generating

Alexia Jolicoeur-Martineau 89 Nov 09, 2022
⚓ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo · Documentation · Medium article 🔍 Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022
This is the repository of our article published on MDPI Entropy "Feature Selection for Recommender Systems with Quantum Computing".

Collaborative-driven Quantum Feature Selection This repository was developed by Riccardo Nembrini, PhD student at Politecnico di Milano. See the websi

Quantum Computing Lab @ Politecnico di Milano 10 Apr 21, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

37 Dec 03, 2022
Live training loss plot in Jupyter Notebook for Keras, PyTorch and others

livelossplot Don't train deep learning models blindfolded! Be impatient and look at each epoch of your training! (RECENT CHANGES, EXAMPLES IN COLAB, A

Piotr Migdał 1.2k Jan 08, 2023
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022