Deep Survival Machines - Fully Parametric Survival Regression

Overview

Build Status     codecov     License: MIT     GitHub Repo stars

Package: dsm

Python package dsm provides an API to train the Deep Survival Machines and associated models for problems in survival analysis. The underlying model is implemented in pytorch.

For full documentation of the module, please see https://autonlab.github.io/DeepSurvivalMachines/

What is Survival Analysis?

Survival Analysis involves estimating when an event of interest, T would take place given some features or covariates X. In statistics and ML, these scenarios are modelled as regression to estimate the conditional survival distribution, P(T>t|X).
As compared to typical regression problems, Survival Analysis differs in two major ways:

  • The Event distribution, T has positive support i.e. T ∈ [0, ∞).
  • There is presence of censoring i.e. a large number of instances of data are lost to follow up.

Deep Survival Machines

Deep Survival Machines (DSM) is a fully parametric approach to model Time-to-Event outcomes in the presence of Censoring, first introduced in [1]. In the context of Healthcare ML and Biostatistics, this is known as 'Survival Analysis'. The key idea behind Deep Survival Machines is to model the underlying event outcome distribution as a mixure of some fixed ( K ) parametric distributions. The parameters of these mixture distributions as well as the mixing weights are modelled using Neural Networks.

Usage Example

from dsm import DeepSurvivalMachines
model = DeepSurvivalMachines()
model.fit()
model.predict_risk()

Recurrent Deep Survival Machines

Recurrent Deep Survival Machines (RDSM) builds on the original DSM model and allows for learning of representations of the input covariates using Recurrent Neural Networks like LSTMs, GRUs. Deep Recurrent Survival Machines is a natural fit to model problems where there are time dependendent covariates.

Deep Convolutional Survival Machines

Predictive maintenance and medical imaging sometimes requires to work with image streams. Deep Convolutional Survival Machines extends DSM and DRSM to learn representations of the input image data using convolutional layers. If working with streaming data, the learnt representations are then passed through an LSTM to model temporal dependencies before determining the underlying survival distributions.

⚠️ Not Implemented Yet!

Deep Cox Mixtures

The Cox Mixture involves the assumption that the survival function of the individual to be a mixture of K Cox Models. Conditioned on each subgroup Z=k; the PH assumptions are assumed to hold and the baseline hazard rates is determined non-parametrically using an spline-interpolated Breslow's estimator. For full details on Deep Cox Mixture, refer to the paper:

Deep Cox Mixtures for Survival Regression. Machine Learning in Health Conference (2021)

Installation

[email protected]:~$ git clone https://github.com/autonlab/DeepSurvivalMachines.git
[email protected]:~$ cd DeepSurvivalMachines
[email protected]:~$ pip install -r requirements.txt

Examples

  1. Deep Survival Machines on the SUPPORT Dataset
  2. Recurrent Deep Survival Machines on the PBC Dataset

References

Please cite the following papers if you are using the dsm package.

[1] Deep Survival Machines: Fully Parametric Survival Regression and Representation Learning for Censored Data with Competing Risks. IEEE Journal of Biomedical & Health Informatics (2021)

  @article{nagpal2021deep,
  title={Deep Survival Machines: Fully Parametric Survival Regression and\
  Representation Learning for Censored Data with Competing Risks},
  author={Nagpal, Chirag and Li, Xinyu and Dubrawski, Artur},
  journal={IEEE Journal of Biomedical and Health Informatics},
  year={2021}
  }

[2] Deep Parametric Time-to-Event Regression with Time-Varying Covariates. AAAI Spring Symposium (2021)

@InProceedings{pmlr-v146-nagpal21a,
  title = 	 {Deep Parametric Time-to-Event Regression with Time-Varying Covariates},
  author =       {Nagpal, Chirag and Jeanselme, Vincent and Dubrawski, Artur},
  booktitle = 	 {Proceedings of AAAI Spring Symposium on Survival Prediction - Algorithms, Challenges, and Applications 2021},
  series = 	 {Proceedings of Machine Learning Research},
  publisher =    {PMLR},
  }

[3] Deep Cox Mixtures for Survival Regression. Machine Learning for Healthcare (2021)

@InProceedings{nagpal2021dcm,
  title={Deep Cox Mixtures for Survival Regression},
  author={Nagpal, Chirag and Yadlowsky, Steve and Rostamzadeh, Negar and Heller, Katherine},
  booktitle={Proceedings of the 6th Machine Learning for Healthcare Conference},
  pages={674--708},
  year={2021},
  volume={149},
  series={Proceedings of Machine Learning Research},
  publisher={PMLR},
}

Compatibility

dsm requires python 3.5+ and pytorch 1.1+.

To evaluate performance using standard metrics dsm requires scikit-survival.

Contributing

dsm is on GitHub. Bug reports and pull requests are welcome.

License

MIT License

Copyright (c) 2020 Carnegie Mellon University, Auton Lab

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Owner
Carnegie Mellon University Auton Lab
Carnegie Mellon University Auton Lab
A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching.

A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching. The solver will solve equations of the type: A can be

Sanjeet N. Dasharath 3 Feb 15, 2022
MICOM is a Python package for metabolic modeling of microbial communities

Welcome MICOM is a Python package for metabolic modeling of microbial communities currently developed in the Gibbons Lab at the Institute for Systems

57 Dec 21, 2022
OptaPy is an AI constraint solver for Python to optimize planning and scheduling problems.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 208 Dec 27, 2022
ML Kaggle Titanic Problem using LogisticRegrission

-ML-Kaggle-Titanic-Problem-using-LogisticRegrission here you will find the solution for the titanic problem on kaggle with comments and step by step c

Mahmoud Nasser Abdulhamed 3 Oct 23, 2022
A Python step-by-step primer for Machine Learning and Optimization

early-ML Presentation General Machine Learning tutorials A Python step-by-step primer for Machine Learning and Optimization This github repository gat

Dimitri Bettebghor 8 Dec 01, 2022
Official code for HH-VAEM

HH-VAEM This repository contains the official Pytorch implementation of the Hierarchical Hamiltonian VAE for Mixed-type Data (HH-VAEM) model and the s

Ignacio Peis 8 Nov 30, 2022
Learning --> Numpy January 2022 - winter'22

Numerical-Python Numpy NumPy is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along

Shahzaneer Ahmed 0 Mar 12, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Jan 09, 2023
A repository to index and organize the latest machine learning courses found on YouTube.

📺 ML YouTube Courses At DAIR.AI we ❤️ open education. We are excited to share some of the best and most recent machine learning courses available on

DAIR.AI 9.6k Jan 01, 2023
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application

Intel(R) Extension for Scikit-learn* Installation | Documentation | Examples | Support | FAQ With Intel(R) Extension for Scikit-learn you can accelera

Intel Corporation 858 Dec 25, 2022
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023
PyPOTS - A Python Toolbox for Data Mining on Partially-Observed Time Series

A python toolbox/library for data mining on partially-observed time series, supporting tasks of forecasting/imputation/classification/clustering on incomplete multivariate time series with missing va

Wenjie Du 179 Dec 31, 2022
Open MLOps - A Production-focused Open-Source Machine Learning Framework

Open MLOps - A Production-focused Open-Source Machine Learning Framework Open MLOps is a set of open-source tools carefully chosen to ease user experi

Data Revenue 590 Dec 28, 2022
icepickle is to allow a safe way to serialize and deserialize linear scikit-learn models

icepickle It's a cooler way to store simple linear models. The goal of icepickle is to allow a safe way to serialize and deserialize linear scikit-lea

vincent d warmerdam 24 Dec 09, 2022
Free MLOps course from DataTalks.Club

MLOps Zoomcamp Our MLOps Zoomcamp course Sign up here: https://airtable.com/shrCb8y6eTbPKwSTL (it's not automated, you will not receive an email immed

DataTalksClub 4.6k Dec 31, 2022
Distributed Tensorflow, Keras and PyTorch on Apache Spark/Flink & Ray

A unified Data Analytics and AI platform for distributed TensorFlow, Keras and PyTorch on Apache Spark/Flink & Ray What is Analytics Zoo? Analytics Zo

2.5k Dec 28, 2022
Climin is a Python package for optimization, heavily biased to machine learning scenarios

climin climin is a Python package for optimization, heavily biased to machine learning scenarios distributed under the BSD 3-clause license. It works

Biomimetic Robotics and Machine Learning at Technische Universität München 177 Sep 02, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

Sebastian Raschka 4.2k Dec 29, 2022
Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale.

Model Search Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers sp

AriesTriputranto 1 Dec 13, 2021