BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training

Overview

BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training

By Likun Cai, Zhi Zhang, Yi Zhu, Li Zhang, Mu Li, Xiangyang Xue.

This repo is the official implementation of BigDetection. It is based on mmdetection and CBNetV2.

Introduction

We construct a new large-scale benchmark termed BigDetection. Our goal is to simply leverage the training data from existing datasets (LVIS, OpenImages and Object365) with carefully designed principles, and curate a larger dataset for improved detector pre-training. BigDetection dataset has 600 object categories and contains 3.4M training images with 36M object bounding boxes. We show some important statistics of BigDetection in the following figure.

Left: Number of images per category of BigDetection. Right: Number of instances in different object sizes.

Results and Models

BigDetection Validation

We show the evaluation results on BigDetection Validation. We hope BigDetection could serve as a new challenging benchmark for evaluating next-level object detection methods.

Method mAP (bigdet val) Links
YOLOv3 9.7 model/config
Deformable DETR 13.1 model/config
Faster R-CNN (C4)* 18.9 model
Faster R-CNN (FPN)* 19.4 model
CenterNet2* 23.1 model
Cascade R-CNN* 24.1 model
CBNetV2-Swin-Base 35.1 model/config

COCO Validation

We show the finetuning performance on COCO minival/test-dev. Results show that BigDetection pre-training provides significant benefits for different detector architectures. We achieve 59.8 mAP on COCO test-dev with a single model.

Method mAP (coco minival/test-dev) Links
YOLOv3 30.5/- config
Deformable DETR 39.9/- model/config
Faster R-CNN (C4)* 38.8/- model
Faster R-CNN (FPN)* 40.5/- model
CenterNet2* 45.3/- model
Cascade R-CNN* 45.1/- model
CBNetV2-Swin-Base 59.1/59.5 model/config
CBNetV2-Swin-Base (TTA) 59.5/59.8 config

Data Efficiency

We followed STAC and SoftTeacher to evaluate on COCO for different partial annotation settings.

Method mAP (1%) mAP (2%) mAP (5%) mAP (10%)
Baseline 9.8 14.3 21.2 26.2
STAC 14.0 18.3 24.4 28.6
SoftTeacher (ICCV 21) 20.5 26.5 30.7 34.0
Ours 25.3 28.1 31.9 34.1
model model model model

Notes

  • The models following * are implemented on another detection codebase Detectron2. Here we provide the pretrained checkpoints. The results can be reproduced following the installation of CenterNet2 codebase.
  • Most of models are trained for 8X schedule on BigDetection.
  • Most of pretrained models are finetuned for 1X schedule on COCO.
  • TTA denotes test time augmentation.
  • Pre-trained models of Swin Transformer can be downloaded from Swin Transformer for ImageNet Classification.

Getting Started

Requirements

  • Ubuntu 16.04
  • CUDA 10.2

Installation

# Create conda environment
conda create -n bigdet python=3.7 -y
conda activate bigdet

# Install Pytorch
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 -c pytorch

# Install mmcv
pip install mmcv-full==1.3.9 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html

# Clone and install
git clone https://github.com/amazon-research/bigdetection.git
cd bigdetection
pip install -r requirements/build.txt
pip install -v -e .

# Install Apex (optinal)
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Data Preparation

Our BigDetection involves 3 datasets and train/val data can be downloaded from their official website (Objects365, OpenImages v6, LVIS v1.0). All datasets should be placed under $bigdetection/data/ as below. The synsets (total 600 class names) of BigDetection dataset can be downloaded here: bigdetection_synsets. Contact us with [email protected] to get access to our pre-processed annotation files.

bigdetection/data
└── BigDetection
    ├── annotations
    │   ├── bigdet_obj_train.json
    │   ├── bigdet_oid_train.json
    │   ├── bigdet_lvis_train.json
    │   ├── bigdet_val.json
    │   └── cas_weights.json
    ├── train
    │   ├── Objects365
    │   ├── OpenImages
    │   └── LVIS
    └── val

Training

To train a detector with pre-trained models, run:

# multi-gpu training
tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> --cfg-options load_from=<PRETRAIN_MODEL>

Pre-training

To pre-train a CBNetV2 with a Swin-Base backbone on BigDetection using 8 GPUs, run: (PRETRAIN_MODEL should be pre-trained checkpoint of Base-Swin-Transformer: model)

tools/dist_train.sh configs/BigDetection/cbnetv2/htc_cbv2_swin_base_giou_4conv1f_adamw_bigdet.py 8 \
    --cfg-options load_from=<PRETRAIN_MODEL>

To pre-train a Deformable-DETR with a ResNet-50 backbone on BigDetection, run:

tools/dist_train.sh configs/BigDetection/deformable_detr/deformable_detr_r50_16x2_8x_bigdet.py 8

Fine-tuning

To fine-tune a BigDetection pre-trained CBNetV2 (with Swin-Base backbone) on COCO, run: (PRETRAIN_MODEL should be BigDetection pre-trained checkpoint of CBNetV2: model)

tools/dist_train.sh configs/BigDetection/cbnetv2/htc_cbv2_swin_base_giou_4conv1f_adamw_20e_coco.py 8 \
    --cfg-options load_from=<PRETRAIN_MODEL>

Inference

To evaluate a detector with pre-trained checkpoints, run:

tools/dist_test.sh <CONFIG_FILE> <CHECKPOINT> <GPU_NUM> --eval bbox

BigDetection evaluation

To evaluate pre-trained CBNetV2 on BigDetection validation, run:

tools/dist_test.sh configs/BigDetection/cbnetv2/htc_cbv2_swin_base_giou_4conv1f_adamw_bigdet.py \
    <BIGDET_PRETRAIN_CHECKPOINT> 8 --eval bbox

COCO evaluation

To evaluate COCO-finetuned CBNetV2 on COCO validation, run:

# without test-time-augmentation
tools/dist_test.sh configs/BigDetection/cbnetv2/htc_cbv2_swin_base_giou_4conv1f_adamw_20e_coco.py \
    <COCO_FINETUNE_CHECKPOINT> 8 --eval bbox mask

# with test-time-augmentation
tools/dist_test.sh configs/BigDetection/cbnetv2/htc_cbv2_swin_base_giou_4conv1f_adamw_20e_coco_tta.py \
    <COCO_FINETUNE_CHECKPOINT> 8 --eval bbox mask

Other configuration based on Detectron2 can be found at detectron2-probject.

Citation

If you use our dataset or pretrained models in your research, please kindly consider to cite the following paper.

@article{bigdetection2022,
  title={BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training},
  author={Likun Cai and Zhi Zhang and Yi Zhu and Li Zhang and Mu Li and Xiangyang Xue},
  journal={arXiv preprint arXiv:2203.13249},
  year={2022}
}

Security

See CONTRIBUTING for more information.

License

This project is licensed under the Apache-2.0 License.

Acknowledgement

We thank the authors releasing mmdetection and CBNetv2 for object detection research community.

Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
This is a template for the Non-autoregressive Deep Learning-Based TTS model (in PyTorch).

Non-autoregressive Deep Learning-Based TTS Template This is a template for the Non-autoregressive TTS model. It contains Data Preprocessing Pipeline D

Keon Lee 13 Dec 05, 2022
Semi-supervised learning for object detection

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object

Google Research 348 Dec 25, 2022
NR-GAN: Noise Robust Generative Adversarial Networks

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

Takuhiro Kaneko 59 Dec 11, 2022
O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning (CoRL 2021)

O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance Learning Object-object Interaction Affordance Learning. For a given object-object int

Kaichun Mo 26 Nov 04, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 02, 2023
Implementation of the federated dual coordinate descent (FedDCD) method.

FedDCD.jl Implementation of the federated dual coordinate descent (FedDCD) method. Installation To install, just call Pkg.add("https://github.com/Zhen

Zhenan Fan 6 Sep 21, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
Optimal space decomposition based-product quantization for approximate nearest neighbor search

Optimal space decomposition based-product quantization for approximate nearest neighbor search Abstract Product quantization(PQ) is an effective neare

Mylove 1 Nov 19, 2021
Implementation of QuickDraw - an online game developed by Google, combined with AirGesture - a simple gesture recognition application

QuickDraw - AirGesture Introduction Here is my python source code for QuickDraw - an online game developed by google, combined with AirGesture - a sim

Viet Nguyen 89 Dec 18, 2022
A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

Yutian Liu 2 Jan 29, 2022
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"

Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi

1 Nov 02, 2022
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
This Deep Learning Model Predicts that from which disease you are suffering.

Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int

Jai Viral Doshi 0 Jan 20, 2022
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
Interactive Image Generation via Generative Adversarial Networks

iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for

Jun-Yan Zhu 3.9k Dec 23, 2022