Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Overview

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective

Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Installing

Standard pip instal [Recommended]

TODO

If you are going to use a gpu the do this first before continuing (or check the offical website: https://pytorch.org/get-started/locally/):

pip3 install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html

Otherwise, just doing the follwoing should work.

pip install automl

If that worked, then you should be able to import is as follows:

import automl

Manual installation [Development]

To use library first get the code from this repo (e.g. fork it on github):

git clone [email protected]/brando90/automl-meta-learning.git

Then install it in development mode in your python env with python >=3.9 (read modules_in_python.md to learn about python envs in uutils). E.g. create your env with conda:

conda create -n metalearning python=3.9
conda activate metalearning

Then install it in edibable mode and all it's depedencies with pip in the currently activated conda environment:

pip install -e ~/automl-meta-learning/automl-proj-src/

since the depedencies have not been written install them:

pip install -e ~/ultimate-utils/ultimate-utils-proj-src

then test as followsing:

python -c "import uutils; print(uutils); uutils.hello()"
python -c "import meta_learning; print(meta_learning)"
python -c "import meta_learning; print(meta_learning); meta_learning.hello()"

output should be something like this:

hello from uutils __init__.py in: (metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import meta_learning; print(meta_learning)" (metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import meta_learning; print(meta_learning); meta_learning.hello()" hello from torch_uu __init__.py in: ">
(metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import uutils; print(uutils); uutils.hello()"

       
        

hello from uutils __init__.py in:

        
         

(metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import meta_learning; print(meta_learning)"

         
          
(metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import meta_learning; print(meta_learning); meta_learning.hello()"

          
           

hello from torch_uu __init__.py in:

            
           
          
         
        
       

Reproducing Results

TODO

Citation

B. Miranda, Y.Wang, O. Koyejo.
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective. 
(Planned Release Date December 2021).
https://drive.google.com/file/d/1cTrfh-Tg39EnbI7u0-T29syyDp6e_gjN/view?usp=sharing

https://drive.google.com/file/d/1cTrfh-Tg39EnbI7u0-T29syyDp6e_gjN/view?usp=sharing

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"

Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns

Kaizhi Yang 42 Dec 09, 2022
Interactive dimensionality reduction for large datasets

BlosSOM 🌼 BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimen

19 Dec 14, 2022
Using BERT+Bi-LSTM+CRF

Chinese Medical Entity Recognition Based on BERT+Bi-LSTM+CRF Step 1 I share the dataset on my google drive, please download the whole 'CCKS_2019_Task1

Xiang WU 55 Dec 21, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
Level Based Customer Segmentation

level_based_customer_segmentation Level Based Customer Segmentation Persona Veri Seti kullanılarak müşteri segmentasyonu yapılmıştır. KOLONLAR : PRICE

Buse Yıldırım 6 Dec 21, 2021
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

9.3k Jan 02, 2023
A curated list of long-tailed recognition resources.

Awesome Long-tailed Recognition A curated list of long-tailed recognition and related resources. Please feel free to pull requests or open an issue to

Zhiwei ZHANG 542 Jan 01, 2023
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

20 Jun 08, 2022
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation [arxiv] This is the official repository for CDTrans: Cross-domain Transformer for

238 Dec 22, 2022
BED: A Real-Time Object Detection System for Edge Devices

BED: A Real-Time Object Detection System for Edge Devices About this project Thi

Data Analytics Lab at Texas A&M University 44 Nov 18, 2022
banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services.

banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services. This library is developed by Bandit ML and ex-authors of Facebook's app

Bandit ML 51 Dec 22, 2022