Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Overview

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective

Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Installing

Standard pip instal [Recommended]

TODO

If you are going to use a gpu the do this first before continuing (or check the offical website: https://pytorch.org/get-started/locally/):

pip3 install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html

Otherwise, just doing the follwoing should work.

pip install automl

If that worked, then you should be able to import is as follows:

import automl

Manual installation [Development]

To use library first get the code from this repo (e.g. fork it on github):

git clone [email protected]/brando90/automl-meta-learning.git

Then install it in development mode in your python env with python >=3.9 (read modules_in_python.md to learn about python envs in uutils). E.g. create your env with conda:

conda create -n metalearning python=3.9
conda activate metalearning

Then install it in edibable mode and all it's depedencies with pip in the currently activated conda environment:

pip install -e ~/automl-meta-learning/automl-proj-src/

since the depedencies have not been written install them:

pip install -e ~/ultimate-utils/ultimate-utils-proj-src

then test as followsing:

python -c "import uutils; print(uutils); uutils.hello()"
python -c "import meta_learning; print(meta_learning)"
python -c "import meta_learning; print(meta_learning); meta_learning.hello()"

output should be something like this:

hello from uutils __init__.py in: (metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import meta_learning; print(meta_learning)" (metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import meta_learning; print(meta_learning); meta_learning.hello()" hello from torch_uu __init__.py in: ">
(metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import uutils; print(uutils); uutils.hello()"

       
        

hello from uutils __init__.py in:

        
         

(metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import meta_learning; print(meta_learning)"

         
          
(metalearning) brando~/automl-meta-learning/automl-proj-src ❯ python -c "import meta_learning; print(meta_learning); meta_learning.hello()"

          
           

hello from torch_uu __init__.py in:

            
           
          
         
        
       

Reproducing Results

TODO

Citation

B. Miranda, Y.Wang, O. Koyejo.
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective. 
(Planned Release Date December 2021).
https://drive.google.com/file/d/1cTrfh-Tg39EnbI7u0-T29syyDp6e_gjN/view?usp=sharing

https://drive.google.com/file/d/1cTrfh-Tg39EnbI7u0-T29syyDp6e_gjN/view?usp=sharing

MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 03, 2023
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
A curated list of the latest breakthroughs in AI (in 2021) by release date with a clear video explanation, link to a more in-depth article, and code.

2021: A Year Full of Amazing AI papers- A Review 📌 A curated list of the latest breakthroughs in AI by release date with a clear video explanation, l

Louis-François Bouchard 2.9k Dec 31, 2022
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022
CUAD

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
Orbivator AI - To Determine which features of data (measurements) are most important for diagnosing breast cancer and find out if breast cancer occurs or not.

Orbivator_AI Breast Cancer Wisconsin (Diagnostic) GOAL To Determine which features of data (measurements) are most important for diagnosing breast can

anurag kumar singh 1 Jan 02, 2022
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
Voila - Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
A Protein-RNA Interface Predictor Based on Semantics of Sequences

PRIP PRIP:A Protein-RNA Interface Predictor Based on Semantics of Sequences installation gensim==3.8.3 matplotlib==3.1.3 xgboost==1.3.3 prettytable==2

李优 0 Mar 25, 2022
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
This repo is about to create the Streamlit application for given ML model.

HR-Attritiion-using-Streamlit This repo is about to create the Streamlit application for given ML model. Problem Statement: Managing peoples at workpl

Pavan Giri 0 Dec 10, 2021
A PyTorch implementation of the architecture of Mask RCNN

EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso

Sai Himal Allu 975 Dec 30, 2022
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other

ML_Model_implementaion Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other dectree_model: Implementation o

Anshuman Dalai 3 Jan 24, 2022
Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation Overview This example will show how to validate the status of our firewall before and a

Calvin Remsburg 1 Jan 07, 2022