This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

Overview

๐ŸŒŸ Sparse Spatial Transformers for Few-Shot Learning

This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers).

Our code is based on MCL and FEAT.

๐Ÿ”– Citation

If you find our work useful, please consider citing our work using the bibtex:

@Article{chen2021sparse,
	author  = {Chen, Haoxing and Li, Huaxiong and Li, Yaohui and Chen, Chunlin},
	title   = {Sparse Spatial Transformers for Few-Shot Learning},
	journal = {arXiv preprint arXiv:2109.12932},
	year    = {2021},
}

๐ŸŒด Prerequisites

  • Linux
  • Python 3.8
  • Pytorch 1.9.1
  • GPU + CUDA CuDNN
  • pillow, torchvision, scipy, numpy

๐Ÿ“‘ Datasets

Dataset download link:

  • miniImageNet It contains 100 classes with 600 images in each class, which are built upon the ImageNet dataset. The 100 classes are divided into 64, 16, 20 for meta-training, meta-validation and meta-testing, respectively.
  • tieredImageNet TieredImageNet is also a subset of ImageNet, which includes 608 classes from 34 super-classes. Compared with miniImageNet, the splits of meta-training(20), meta-validation(6) and meta-testing(8) are set according to the super-classes to enlarge the domain difference between training and testing phase. The dataset also include more images for training and evaluation (779,165 images in total).

Note: You need to manually change the dataset directory.

๐Ÿ€ Few-shot Classification

  • Train a 5-way 1-shot SSFormers model based on Conv-64F (on miniImageNet dataset):
 python experiments/run_trainer.py  --cfg ./configs/miniImagenet/ST_N5K1_R12.yaml --device 0

Test model on the test set:

python experiments/run_evaluator.py --cfg ./configs/miniImagenet/ST_N5K1_R12.yaml -c ./checkpoint/*/*.pth --device 0

and semi-supervised few-shot learning tasks (with trial t=1).

python experiments/run_semi_trainer.py --cfg ./configs/miniImagenet/ST_N5K1_semi_with_extractor.yaml --device 0 -t 1

python experiments/run_semi_evaluator.py --cfg ./configs/miniImagenet/ST_N5K1_semi_with_extractor.yaml -c ./checkpoints/*/*.pth --device 0

๐Ÿ“ง Contacts

Please feel free to contact us if you have any problems.

Email: [email protected]

Owner
chx_nju
Master student in Nanjing University.
chx_nju
CvT-ASSD: Convolutional vision-Transformerbased Attentive Single Shot MultiBox Detector (ICTAI 2021 CCF-C ไผš่ฎฎ)The 33rdย IEEE International Conference on Tools with Artificial Intelligence

CvT-ASSD including extra CvT, CvT-SSD, VGG-ASSD models original-code-website: https://github.com/albert-jin/CvT-SSD new-code-website: https://github.c

้‡‘ไผŸๅผบ -ไธŠๆตทๅคงๅญฆไบบๅทฅๆ™บ่ƒฝๅฐๆธฃๆธฃ~ 5 Mar 07, 2022
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"

BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro

Debora Marks Lab 10 Sep 18, 2022
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
๊ณต๊ณต์žฅ์†Œ์—์„œ ๋ˆˆ๋งŒ ๋Œ๋ฆฌ๋ฉด CCTV๊ฐ€ ๋ณด์ธ๋‹ค๋Š” ๋ง์ด ๊ณผ์–ธ์ด ์•„๋‹ ์ •๋„๋กœ CCTV๊ฐ€ ์šฐ๋ฆฌ ์ƒํ™œ์— ๊นŠ์ˆ™์ด ์ž๋ฆฌ ์žก์•˜์Šต๋‹ˆ๋‹ค.

ObsCare_Main ์†Œ๊ฐœ ๊ณต๊ณต์žฅ์†Œ์—์„œ ๋ˆˆ๋งŒ ๋Œ๋ฆฌ๋ฉด CCTV๊ฐ€ ๋ณด์ธ๋‹ค๋Š” ๋ง์ด ๊ณผ์–ธ์ด ์•„๋‹ ์ •๋„๋กœ CCTV๊ฐ€ ์šฐ๋ฆฌ ์ƒํ™œ์— ๊นŠ์ˆ™์ด ์ž๋ฆฌ ์žก์•˜์Šต๋‹ˆ๋‹ค. CCTV์˜ ๋Œ€์ˆ˜๊ฐ€ ๊ธ‰๊ฒฉํžˆ ๋Š˜์–ด๋‚˜๋ฉด์„œ ๊ด€๋ฆฌ์™€ ํšจ์œจ์„ฑ ๋ฌธ์ œ์™€ ๋”๋ถˆ์–ด, ๊ณณ๊ณณ์— ์„ค์น˜๋œ CCTV๋ฅผ ๊ฐœ๋ณ„ ๊ด€์ œํ•˜๋Š” ๊ฒƒ์œผ๋กœ๋Š” ์‘๊ธ‰ ์ƒ

5 Jul 07, 2022
PyTorch-lightning implementation of the ESFW module proposed in our paper Edge-Selective Feature Weaving for Point Cloud Matching

Edge-Selective Feature Weaving for Point Cloud Matching This repository contains a PyTorch-lightning implementation of the ESFW module proposed in our

5 Feb 14, 2022
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5โ€”โ€”Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
Automatic caption evaluation metric based on typicality analysis.

SeMantic and linguistic UndeRstanding Fusion (SMURF) Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRs

Joshua Feinglass 6 Jan 09, 2022
A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy.

Visdom A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Python. Overview Concepts Setup Usage API To

FOSSASIA 9.4k Jan 07, 2023
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo

Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani Most commands are in run_scripts. W

Jackson Wang 15 Dec 26, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
The code repository for "RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection" (ACM MM'21)

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection (ACM MM'21) By Zhuofan Zong, Qianggang Cao, Biao Leng Introduction F

TempleX 9 Jul 30, 2022
Code for Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021)

Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021) authors: Boris Knyazev, Michal Drozdzal, Graham Taylor, Adriana Romero-Soriano Overv

Facebook Research 462 Jan 03, 2023
TensorFlow implementation of Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction)

Barlow-Twins-TF This repository implements Barlow Twins (Barlow Twins: Self-Supervised Learning via Redundancy Reduction) in TensorFlow and demonstrat

Sayak Paul 36 Sep 14, 2022
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation.

AVATAR Official code of our work, AVATAR: A Parallel Corpus for Java-Python Program Translation. AVATAR stands for jAVA-pyThon progrAm tRanslation. AV

Wasi Ahmad 26 Dec 03, 2022
Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)

TorchCAM: class activation explorer Simple way to leverage the class-specific activation of convolutional layers in PyTorch. Quick Tour Setting your C

F-G Fernandez 1.2k Dec 29, 2022